

http://www.ijcsjournal.com Volume 1, Issue 2, No 4, 2013. ISSN: 2348-6600

Reference ID: IJCS-024 PAGE NO: 128-131

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 128

Published by SK Research Group of Companies (SKRGC).

Cloud Storage System Using Secure Data Forwarding

S.SELVANADHI , K.RAVIKUMAR,

Research scholar, Asst.Professor

 Dept.of computer science,

M.phil(computer science) , Tamil university,

Tamil university, Thanjavur-10.

 Thanjavur-10. ravikasi2001@yahoo.com

Email-selvanathimca@gmail.com

Abstract— Storing data in a third party’s cloud system

causes serious concern over data confidentiality. General

encryption schemes protect data confidentiality, but also

limit the functionality of the storage system because a few

operations are supported over encrypted data. Constructing
a secure storage system that supports multiple functions is

challenging when the storage system is distributed and has

no central authority. A threshold proxy re-encryption

scheme and integrate it with a decentralized erasure code

such that a secure distributed storage system is formulated.

The distributed storage system not only supports secure and

robust data storage and retrieval, but also lets a user forward

his data in the storage servers to another user without

retrieving the data back. The main technical contribution is

that the proxy re-encryption scheme supports encoding

operations over encrypted messages as well as forwarding

operations over encoded and encrypted messages. Our
method fully integrates encrypting, encoding, and

forwarding. Analyze and suggest suitable parameters for the

number of copies of a message dispatched to storage servers

and the number of storage servers queried by a key server.

Keywords: Decentralized erasure code, proxy re-

encryption, threshold cryptography, secure storage system.

[1]INTRODUCTION

As high-speed networks and ubiquitous Internet access

become available in recent years, many services are

provided on the Internet such that users can use them from

anywhere at any time. For example, the email service is

probably the most popular one. Cloud computing is a
concept that treats the resources on the Internet as a unified

entity, a cloud. Users just use services without being

concerned about how computation is done and storage is

managed. Focus on designing a cloud storage system for

robustness, confidentiality, and functionality. A cloud

storage system is considered as a large scale distributed
storage system that consists of many independent storage

servers. One way to provide data robustness is to replicate a

message such that each storage server stores a copy of the

message. It is very robust because the message can be

retrieved as long as one storage server survives. Another

way is to encode a message of k symbols into a codeword of

n symbols by erasure coding. To store a message, each of its

codeword symbols is stored in a different storage server. A

storage server failure corresponds to an erasure error of the

codeword symbol. As long as the number of failure servers

is under the tolerance threshold of the erasure code, the

message can be recovered from the codeword symbols
stored in the available storage servers by the decoding

process. This provides a tradeoff between the storage size

and the tolerance threshold of failure servers. A

decentralized erasure code is an erasure code that

independently computes each codeword symbol for a

message. Thus, the encoding process for a message can be

split into n parallel tasks of generating codeword symbols.

A decentralized erasure code is suitable for use in a

distributed storage system. After the message symbols are

sent to storage servers, each storage server independently

computes a codeword symbol for the received message
symbols and stores it. This finishes the encoding and storing

process. The recovery process is the same.

mailto:Email-selvanathimca@gmail.com

http://www.ijcsjournal.com Volume 1, Issue 2, No 4, 2013. ISSN: 2348-6600

Reference ID: IJCS-024 PAGE NO: 128-131

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 129

Published by SK Research Group of Companies (SKRGC).

[2] INTEGRITY CHECKING

FUNCTIONALITY

Another important functionality about cloud storage is the

function of integrity checking. After a user stores data into

the storage system, he no longer possesses the data at hand.

The user may want to check whether the data are properly

stored in storage servers. The concept of provable data

possession and the notion of proof of storage are proposed.

Later, public audit ability of stored data is addressed in.

Nevertheless all of them consider the messages in the clear

text form.

2.1 Requirements Monitoring: This article does not

propose an approach for runtime requirements monitoring,
and there are many other research papers. To simplify the

discussion and our experimental setup, we have used a

trace-based requirements monitor; however, our ideas are

applicable to other types of requirement monitors as well.

2.2 Functional Requirements: This work does not propose

a heavy weight requirements monitoring for validating

functional requirements, as they can very well be monitored

by verifying the externally visible interface.

2.3 Notion of Integrity: Intentionally not restricted
ourselves to a specific notion of integrity in this article. Any

existing notions, along with a corresponding verification

mechanism, can be used. In the examples presented in this

article, used a notion based on checksum. Briefly, in these

examples, consider that a monitor’s integrity has not been

violated if its checksum as computed by the trust analyzer

and signed by the TPM matches the clean room

measurements. Our approach can be adapted to use more

sophisticated models based on functional equivalence;

however, for the proof of concept, consider a checksum

based notion of integrity to be sufficient.

2.4 Secrecy and Authenticity Issues: This work is

orthogonal and complementary to the secrecy and

authenticity research in the Web services security

community. Do not focus on securing the interaction

between service providers, brokers, and clients, which has

been the main focus of many existing approaches, e.g.,

current standards such as WS-Security and WS-Trust. These

approaches address the issue of security-token

interoperability and secure transactions. They do not address

the integrity issues for components services and they cannot

be used directly to certify indisputable trust in an untrusted

environment. This approach builds upon existing work on

secrecy and authenticity to develop a mechanism for

trusting loosely-coupled components in a service-oriented

computing environment. The rest of this article is organized

as follows: trusted platform modules, which form the basis

of our proposed architecture. Describes key ideas of this

work and evaluate these contributions. In particular, the
former evaluates the feasibility claim and the later evaluates

the utility claims, compares and contrasts this work with

related approaches. Potential adoption paths for our work in

the current service-oriented computing research and

practice. Future work and concludes. Now describe key

parts of the trust platform module.

[3] CRYPTOGRAPHIC COPROCESSOR

The cryptographic coprocessor implements cryptographic

functions executed within the TPM hardware. Hardware or

software entities outside the TPM have no access to the
execution of these functions. A TPM also contains an RSA

accelerator to perform 2,048 bit RSA encryption and

decryption. The TPM uses RSA algorithm for signature

operations on internal and external items. There is also an

engine for computing SHA1 hash for small pieces of data

within the TPM. This SHA1 interface is exposed to the

software entities outside the TPM to support measurements

during the platform boot phases.

3.1 Random Number Generator (RNG)
An RNG is the source of randomness in TPM. It is provided

for key generation, nonce generation, and for randomness in

signatures. This capability is protected from external access.

3.2 Platform Configuration Registers (PCRs)
PCRs are set of registers that can be used to store the 160-

bit hash values obtained using the SHA1 hashing algorithm

of the TPM. The hardware ensures that the hash value of

any PCR can be changed only by encrypting the new data

over the previous hash value of the PCR. Thus, PCRs can be

used to indelibly record the history of the machine since the

last reboot. The PCRs are cleared off at the time of system

reboot.

3.3 Cryptographic Keys

http://www.ijcsjournal.com Volume 1, Issue 2, No 4, 2013. ISSN: 2348-6600

Reference ID: IJCS-024 PAGE NO: 128-131

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 130

Published by SK Research Group of Companies (SKRGC).

Every TPM is identified by a built-in key called the

Endorsement Key, which is included in it by the

manufacturer. The key size is 2,048 bits. The trust that one

reposes in a TPM comes from the fact that this key is unique

and is protected at all times in the TPM. An Endorsement

Certificate, which contains the public key of the

Endorsement Key, certifies this property. This key can be

used by the owner to anonymously confirm that the identity

keys were generated by the TPM in their system. In essence,
every computer has a unique identity which cannot be

repudiated. This can serve to be a fool-proof identity for

every user. The TPM manufacturer provides a certificate for

the Endorsement Key.

3.4 Attestation Identity Keys (AIKs)
AIKs are used by a privacy certification authority to present

different keys to different remote parties to enable the

system to hide its platform identity from other systems.

3.5 Certificates
The TPM is also equipped with three kinds of certificates

endorsement, platform, and conformance. An endorsement
certificate attests that a particular platform configuration is

genuine. This contains the public part of the endorsement

key. The platform certificate attests that the security

components of the platform are genuine. This is provided by

the platform vendor and the conformance certificate can be

provided by a third party to certify the security properties of

the platform.

3.6 TPM Usage Models
Describes three usage models of the TPM. First, hardware

protected storage, where TPM is employed to protect

sensitive data of the user by encrypting the secret data in

such a way that it can only be decoded on a specific

hardware that contains the necessary private key. Second,

information binding, where critical data is bound to a

platform such that it is accessible only if the conditions

specified during the binding are met and rendered

inaccessible if migrated to a different platform. Third,
platform authentication, where attestation identity keys are

always bound to the platform. These can be used to

authenticate the user and the platform. Our technique uses

the third model to authenticate the service implementation

platform, including the requirements monitor. Critics of

TPM claim that TPMs will have a huge impact on user

privacy. Service providers with commercial interest will try

to misuse the power of TPM by introducing stricter controls

and by eliminating user-anonymity. Although the Jury is

still out on the social aspects of TPMs, their wide

availability and advantages combine to warrant research on

the use of these mechanisms for trusted service-oriented

architectures.

[4] INFRASTRUCTURE

4.3 Extensibility for various target services

In this work, THEMIS is focused on SLA-monitoring,

especially for IaaS services (in terms of availability and
performance) and related billing transactions for mutual

verifiability. From the perspective of extensibility, THEMIS

should be naturally applicable to various target services as

well to improve the accountability of each service. For

instance, by applying monitoring techniques S-Mon, we

believe that THEMIS can facilitate the cloud-based services

with accountability. Examples include PaaS, SaaS, and a

cloud storage service. This type of facilitation is possible as

long as the monitoring techniques can be plugged into the

internal monitoring module of S-Mon. As a result, we

believe that the complementarities of THEMIS and the
existing monitoring techniques significantly improve the

extensibility of this work.

4.4 Multi-CNA support

If different users subscribe to different CNAs on a single

physical resource, it becomes necessary for multiple SMons

to be deployable for the multiple CNAs. Implementing this

support requires multiple S-Mons to be invoked on a single

physical resource. In addition, S-Mon needs to implement

locking primitives to synchronize access to its global data of

a physical TPM because multiple S-Mons shares the
physical TPM. By equipping each S-Mon with a virtual

TPM (vTPM) device involving the virtualization of the

hardware TPM, SMon can overcome this restriction. The

http://www.ijcsjournal.com Volume 1, Issue 2, No 4, 2013. ISSN: 2348-6600

Reference ID: IJCS-024 PAGE NO: 128-131

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 131

Published by SK Research Group of Companies (SKRGC).

vTPM component proposes a method of virtual zing the

hardware TPM. It provides the illusion of a physical TPM to

SMons running on a single physical resource. This facility

enables the multiple invocation of S-Mon on a physical

TPM. Each S-Mon can be mapped to a different CAN

because each S-Mon can have a different public key of

CNA. Thus, the multiple CNA support would be a

promising augmentation of this paper.

[5] CONCLUSION

In this paper, consider a cloud storage system consists of

storage servers and key servers. Integrate a newly proposed

threshold proxy re-encryption scheme and erasure codes

over exponents. The threshold proxy encryption scheme

supports encoding, forwarding, and partial decryption

operations in a distributed way. To decrypt a message of K

blocks that are encrypted and encoded to n codeword

symbols, each key server only has to partially decrypt two

codeword symbols in our system. By using the threshold

proxy re-encryption scheme, present a secure cloud storage
system that provides secure data storage and secure data

forwarding functionality in a decentralized structure.

Moreover, each storage server independently performs

encoding and re-encryption and each key server

independently perform partial decryption. Our storage

system and some newly proposed content addressable file

systems and storage system are highly compatible. Our

storage servers act as storage nodes in a content addressable

storage system for storing content addressable blocks. Our

key servers act as access nodes for providing a front-end

layer such as a traditional file system interface. Further

study on detailed cooperation is required.

[6] REFERENCES

[1] A. C. Ltd., “Amazon elastic compute cloud ec2, simple
storage service,” Amazon, http://aws.amazon.com/ec2/,

http://aws.amazon.com/s32/, April 2011.

[2] Microsoft, “Microsoft, windows azure platform,” 2010.

[Online]. Available:

http://www.microsoft.com/windowsazure/

[3] M. Armbrust and A. E. Fox, “Above the clouds: A

Berkeley view of cloud computing,” EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-

2009-28, Feb 2009.

[4] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards

trusted cloud computing,” in Proc. USENIX Hot Cloud

2009.

[5] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-

Authority File system,” Proc. Fourth ACM Int’l Workshop

Storage Security and Survivability (StorageSS), pp. 21-26,

2008.
[6] H.-Y. Lin and W.-G. Tzeng, “A Secure Decentralized

Erasure Code for Distributed Network Storage,” IEEE

Trans. Parallel and Distributed Systems, vol. 21, no. 11, pp.

1586-1594, Nov. 2010.

[7] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W.

Kilian, P. Strzelczak, J. Szczepkowski, C. Ungureanu, and

M. Welnicki,“Hydrastor: A Scalable Secondary Storage,”

Proc. Seventh Conf. File and Storage Technologies (FAST),

pp. 197-210, 2009.

[8] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S.

Rago, G. Calkowski, C. Dubnicki, and A. Bohra, “Hydrafs:
A High- Throughput File System for the Hydrastor Content-

Addressable Storage System,” Proc. Eighth USENIX Conf.

File and Storage Technologies (FAST), p. 17, 2010.

[9] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and

P. Shilane, “Tradeoffs in Scalable Data Routing for

Deduplication Clusters,” Proc. Ninth USENIX Conf. File

and Storage Technologies (FAST), p. 2,2011.

