

http://www.ijcsjournal.com Volume 3, Issue 1, No 3, 2015. ISSN: 2348-6600

Reference ID: IJCS-083 PAGE NO: 473-478.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 473

Published by SK Research Group of Companies (SKRGC).

AUTOMATIC TEST PACKET GENERATION FOR

NETWORKS

Mr. S.MD. Asif , (M.tech Student),

Department of Computer Science and technology

Madina Engineering College,

Andhra Pradesh, Kadapa, India.

syedmohammed548@yahoo.com

 Sri. K. Sreenivasulu, Professor&H.O.D,

Department of Computer Science and technology

Madina Engineering College,

Andhra Pradesh, Kadapa, India.

sreenu.kutala@gmail.com

Abstract— In today’s Environment network are increasing day by

day to maintain the situations is complex because an administrator

couldn’t be find the bugs of bugs primitive kind of tools. To handle

this type of situations proposed a new technology called automatic

test packet generation (ATPG) is a systematic approach for testing

and debugging networks like LAN & WAN and it reads the router

configuration and generates the independent device model.

It generates minimum test packets and examines every

protocol in network. These test packets are flow in sequence and

find out the failures of a localized separated mechanism. ATPG can

detected both incorrect firewall rule and perform problem. ATPG

have static checking or fault localization.

Index Terms: Fault localization, Firewall policies, Static &

Dynamic checking, automatic test packet configuration.

I. INTRODUCTION

In IT technology networks are maintain by the network

administrators or network engineer generally network are

manipulate the CISCO configuration of router, connecting of

misbehave cables, software bugs, faulty interface and faulty

fibers to find out troubleshooting problems network engineers

are use this some system tools (e.g. PING, tracer outer, SNMP
, and TCPdump). Debugging Networks is only becoming

harder as networks are getting bigger (modern data centers

may contain 10 000 switches, a campus network may serve 50

000 users, a 100-Gb/s long-haul link may carry 100 000

flows) and are getting more complicated (with over 6000

RFCs, router software is based on millions of lines of source

code, and network chips often contain billions of gates). It is a

small wonder that network engineers have been labeled

“masters of complexity” . For example suppose a router with a

faulty line card starts dropping packets silently. Alice, who

administers 100 routers, receives a ticket from several

unhappy users complaining about connectivity. First, Alice

examines each router to see if the configuration was changed

recently and concludes that the configuration was untouched.
Next, Alice uses her knowledge of the topology to triangulate

the faulty device with and finally, she calls a colleague to

replace the line card.

 Suppose that video traffic is mapped to a specific queue in a

router, but packets are dropped because the token bucket rate

is too low. It is not at all clear how Alice can track down such

a performance. Troubleshooting a network is difficult for three

reasons. First, the forwarding state is distributed across

multiple routers and firewalls and is defined by their

forwarding tables, filter rules, and other configuration

parameters. Second, the forwarding state is hard to observe
because it typically requires manually logging into every box

in the network. Third, there are many different programs,

protocols, and humans updating the forwarding state

simultaneously when Alice uses and, she is using a crude lens

to examine the current forwarding state for clues to track

down the failure.

ATPG treats links just like normal forwarding rules,

its full coverage Guarantees testing of every link in the

network. It can also be specialized to generate a minimal set of

packets that merely test every link for network livens. At least

http://www.ijcsjournal.com Volume 3, Issue 1, No 3, 2015. ISSN: 2348-6600

Reference ID: IJCS-083 PAGE NO: 473-478.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 474

Published by SK Research Group of Companies (SKRGC).

in this basic form, we feel that ATPG or some similar

technique is fundamental to networks: Instead of reacting to

failures, many network operators such as Internet2 proactively

check the health of their network using pings between all pairs

of sources. However, all-pairs does not guarantee testing of all

links and

Fig: Static versus dynamic checking

 II.FAULT LOCALIZATION

Now a day’s Networks are getting larger and more complex,

hence network admin depend on normal tools such as ping and
to trace route debug the problems. We are proposing

automatic and systematic approach for testing and debugging

networks called “Automatic Test Packet Generation and Fault

Localization”. ATPG read router configurations and generates

a unique model. This model is generating a minimum set of

test packets to exercise every link in network exercise every

rule in the network. Test packets are sent periodically and

detected failure trigger a separate mechanism to localize the

fault. ATPG can detect both functional testing and

performance testing problems. ATPG complements but goes

beyond earlier work in static checking or fault localization.

We describe our prototype ATPG implementation and results

on two real-world data sets applications: like Stanford

University’s backbone network and Internet2. We find that

small number of test packets suffices test all rules in these

networks.

STEP 1- This involves reading the FIBs, ACLs, and config

file, and obtaining the topology. ATPG uses Header Space

Analysis to compute reach ability between all the test

terminals.
STEP 2- The result is then used by the test packet selection

algorithm to compute a minimal set of test packets that can

test ll rules.

STEP 3 - These packets will be sent periodically by the test

terminals

STEP 4 - If an error is erected, the fault localization algorithm

is down the cause of the error.

A general survey of network admin provides

information about common failures and root causes in

network. A fault localization algorithm is to quarantine faulty

devices and its rules and configurations. ATPG performs

various testing like functional and performance testing to
improve accuracy. Evaluation of a prototype ATPG system

using rule sets collected from the Stanford and Internet2

backbones.

http://www.ijcsjournal.com Volume 3, Issue 1, No 3, 2015. ISSN: 2348-6600

Reference ID: IJCS-083 PAGE NO: 473-478.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 475

Published by SK Research Group of Companies (SKRGC).

III.ALGORITHM

1) FAULT MODEL: A rule fails if its observed behavior

differs from its expected behavior. ATPG keeps track of

where rules

fail using
a result function. For a rule, the result function is defined as

We divide faults into two categories: action faults and match

FAULTS: An action fault occurs when every packet matching

the rule is processed incorrectly. Action faults include

unexpected packet loss, a missing rule, congestion, and

miswiring. On the other hand, match faults are harder to detect

because they only affect some packets matching the rule: for

example, when a rule matches a header it should not, or when
a rule misses a header it should match.

We will only consider action faults because they cover most

likely failure conditions and can be detected using only one

test packet per rule.

2) PROBLEM 2 (FAULT LOCALIZATION): Given a list of

(pk0, (R(pk0), (pk1, (R(pk1)) … tuples, find all that satisfies

ᴲpki,R(pki,r)=0.

STEP 1: Consider the results from sending the regular test

packets. For every passing test, place all rules they exercise

into a set of passing rules, P. Similarly, for every failing test,

place all rules they exercise into a set of potentially failing

rules F. By our assumption, one or more of the rules F are in
error. Therefore F-P, is a set of suspect rules.

STEP 2: ATPG next trims the set of suspect rules by weeding

out correctly working rules. ATPG does this using the

reserved packets. ATPG selects reserved packets whose rule

histories contain exactly one rule from the suspect set and

sends these packets. Suppose a reserved packet p exercises

only rule r in the suspect set. If the sending of p fails, ATPG

infers that rule r is in error; if p passes; r is removed from the

suspect set. ATPG repeats this process for each reserved

packet chosen in

STEP 3: In most cases, the suspect set is small enough after
Step 2, which ATPG can terminate and report the suspect set.

If needed, ATPG can narrow down the suspect set

further by sending test packets that exercise two or more of

the rules in the suspect set using the same technique

underlying Step 2. If these test packets pass, ATPG infers that

none of the exercised rules are in error and removes these

rules from the suspect set.

If our Fault Propagation assumption holds, the

method will not miss any faults, and therefore will have no

false negatives.

FALSE POSITIVES: Note that the localization method may

introduce false positives, rules left in the suspect set at the end

of Step 3. Specifically, one or more rules in the suspect set

may in fact behave correctly. False positives are unavoidable

in some cases.

When two rules are in series and there is no path to

exercise only one of them, we say the rules are

indistinguishable; any packet that exercises one rule will also
exercise the other. Hence, if only one rule fails, we cannot tell

which one. For example, if an

ACL rule is followed immediately by a forwarding rule that

matches the same header, the two rules are indistinguishable.

Observe that if we have test terminals before and

after each rule (impractical in many cases), with sufficient test

packets, we can distinguish every rule. Thus, the deployment

of test terminals not only affects test coverage, but also

localization accuracy.

III.TAXONOMY OF CHART

IV.FIREWALL POLICES

A fault model of firewall policies is an explicit hypothesis

about potential faults in firewall policies.

http://www.ijcsjournal.com Volume 3, Issue 1, No 3, 2015. ISSN: 2348-6600

Reference ID: IJCS-083 PAGE NO: 473-478.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 476

Published by SK Research Group of Companies (SKRGC).

Our proposed Fault model includes five types of

faults.

1. WRONG ORDER: This type of fault indicates that the

order of rules is wrong. Recall that the rules in a firewall

policy follow the first-match semantics due to conflicts

between rules.

Disordering firewall rule scan misconfigure a firewall

policy. Wrong order of rules is a common fault caused by

adding a new rule at the beginning of a firewall policy without

carefully considering the order between the new rule and the

original rules. For example, if we misorder r1 and r2 in Figure
1, all packets will be discarded.

2. MISSING RULES: This type of fault indicates that

administrators need to add new rules to the original policy.

Usually, administrators add a new rule regarding a new

security concern. However, sometimes they may forget to add

the rule to the original firewall policy.

3. WRONG PREDICATES: This type of fault indicates that

predicates of some rules are wrong. When configuring a

firewall policy, administrators define the predicates of rules

based on security requirements. However, some special cases

may be overlooked.
4. WRONG DECISIONS: This type of fault indicates that

the decisions of some rules are wrong.

5. WRONG EXTRA RULES: This type of fault indicates

that administrators need to delete some rules from the original

policy. When administrators make some changes to a firewall

policy, they may add a new rule but sometimes forget to delete

old rules that filter a similar set of packets as the new rule

does.

 V.ATPG

Let’s consider a scenario where an administrator maps video

traffic to a specific queue in a router, and packets are dropped

because the token bucket rate is low. What would the network

administrator do in such case?

CURRENT SYSTEM:

The administrator manually decides which ping

packets to send. Here, the approaches designed can prevent

software logic errors but fails to detect failures caused by

failed links and routers.

ATPG SYSTEM:

Instead of the administrator, the ATPG tool would do

so periodically on his or her behalf. Whereas here, ATPG

automatically detects the failures by testing the liveness of the

underlying topology

When an error is detected, ATPG goes through the following

STEPS:

 The system first collects all the forwarding state from

the network

http://www.ijcsjournal.com Volume 3, Issue 1, No 3, 2015. ISSN: 2348-6600

Reference ID: IJCS-083 PAGE NO: 473-478.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 477

Published by SK Research Group of Companies (SKRGC).

 ATPG uses Header Space Analysis to compute reach

ability between all the test terminals.

 The result is then used by the test packet selection

algorithm to compute a minimal set of test packets

that can test all rules.

 These packets will be sent periodically by the test

terminals.

 If an error is detected, the fault localization algorithm

is invoked to narrow down the cause of the error.

Step 1: Collect all forwarding states: Forwarding table which

usually involves reading the FIBs.
Step 2: Generate All-Pairs Reach ability Table: ATPG Start’s

by computing the complete set of packet headers that can be

sent from each test terminal to every other test terminal. For

each such header, ATPG finds the complete set of rules it

exercises along the path. To do so, ATPG applies the all-pairs

reach ability algorithm as follows:

1. Header constraints are applied.

For example, if traffic can be sent on VLAN A, then instead of

starting with an all- x header, the VLAN tag bits are set to A.

2. Set of rules that match the packet are recorded

VI.RESULT ANALYSIS

VII.CONCLUSION AND

FUTURE ENHANCEMENT

In this proposed System we use a method which is neither

exhaustive nor scalable. Even though it reaches all the pairs of

edge nodes it fails to detect faults in liveness properties.

ATPG, however, goes much further than liveness testing with

the same framework. ATPG can test for reach ability policy

(by testing all rules including drop rules) and performance

health (by associating performance measures such as latency
and loss with test packets).

http://www.ijcsjournal.com Volume 3, Issue 1, No 3, 2015. ISSN: 2348-6600

Reference ID: IJCS-083 PAGE NO: 473-478.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 478

Published by SK Research Group of Companies (SKRGC).

Our implementation also augments testing with a

simple fault localization scheme also constructed using the

header space framework.

REFERENCES

1] “ATPG code repository,” [Online]. Available:

http://eastzone.github. com/atpg/

[2] “Automatic Test Pattern Generation,” 2013 [Online].

Available:

http://en.wikipedia.org/wiki/Automatic_test_pattern_generatio

n
[3] P. Barford, N. Duffield, A. Ron, and J. Sommers,

“Network performance anomaly detection and localization,”

in Proc. IEEE INFOCOM, Apr. , pp. 1377–1385.

[4] “Beacon,” [Online]. Available:

http://www.beaconcontroller.net/

[5] Y. Bejerano and R. Rastogi, “Robust monitoring of link

delays and faults in IP networks,” IEEE/ACM Trans. Netw.,

vol. 14, no. 5, pp. 1092–1103, Oct. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and

automatic generation of high-coverage tests for complex

systems programs,” in Proc. OSDI, Berkeley, CA, USA, 2008,
pp. 209–224.

[7] M. Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford, “A NICE way to test OpenFlow applications,” in

Proc. NSDI, 2012, pp. 10–10.

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot,

“Netdiagnoser: Troubleshooting network unreachabilities

using end-to-end probes and routing data,” in Proc. ACM

CoNEXT, 2007, pp. 18:1–18:12..

[9] N. Duffield, “Network tomography of binary network

performance characteristics,” IEEE Trans. Inf. Theory, vol.

52, no. 12, pp. 5373–5388, Dec. 2006.

[10] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley,
“Inferring link loss using striped unicast probes,” in Proc.

IEEE INFOCOM, 2001, vol. 2, pp. 915–923.

[11] N. G. Duffield and M. Grossglauser, “Trajectory

sampling for direct traffic observation,” IEEE/ACM Trans.

Netw., vol. 9, no. 3, pp. 280–292, Jun. 2001.

[12] P. Gill, N. Jain, and N. Nagappan, “Understanding

network failures in data centers: Measurement, analysis, and

implications,” in Proc. ACM SIGCOMM, 2011, pp. 350–361.

[13] “Hassel, the Header Space Library,” [Online]. Available:

https://bitbucket. org/peymank/hassel-public/

[14] Internet2, Ann Arbor, MI, USA, “The Internet2
observatory data collections,” [Online]. Available:

http://www.internet2.edu/observatory/ archive/data-

collections.html

http://eastzone.github/

