

http://www.ijcsjournal.com Volume 3, Issue 1, No 4, 2015. ISSN: 2348-6600

Reference ID: IJCS-087 PAGE NO: 499-503.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 499

Published by SK Research Group of Companies (SKRGC).

Performance Enhancment in Content Centric

Network Using Load Balancing

K.V.VINODKUMAR#1 , Mrs T.MANORANJITHAM*2,
#K.V.VINODKUMAR(M.Tech),Dept of Computer Science and Engineering.SRM University, CHENNAI

*Mrs T.MANORANJITHAM, Asst Prof, Dept of Computer Science and Engineering.SRM University, CHENNAI

1
kommi.vinodkumar@gmail.com

 2
manoranjitham.t@ktr.srmuniv.ac.in

Abstract— In Content Delivery Networks (CDNs) the

challenging issue is defining and implementing an effective

law for load balancing. In the proposed system an formal

study of a CDN system is carried out through the exploitation

of a fluid flow model characterization of the network of
servers. It provides a lemma about the network queues

equilibrium. The result is leveraged in order to devise a novel

distributed and time-continuous algorithm for load balancing,

which is also reformulated in a time-discrete version .The

discrete formulation of the proposed balancing law is

eventually discussed with the actual implementation in a real-

world scenario. Finally, this is validated by the means of

simulations.

Index Terms— Content Delivery Network (CDN),

control theory, request balancing.

I. INTRODUCTION

 A content delivery network (CDN) is a large

distributed system of servers deployed in multiple data

centers across the Internet. The goal of a CDN is to serve
content to end-users with high availability and high

performance. CDNs serve a large fraction of the Internet

content today, including web objects (text, graphics and

scripts), downloadable objects(media files, software,

documents) ,applications (e-commerce, portals), live

streaming media, on-demand streaming media, and social

networks.

 Content providers such as media companies and e-

commerce vendors pay CDN operators to deliver their

content to their audience of end-users. In turn, a CDN pays

ISPs, carriers, and network operators for hosting its servers
in their data centers. Besides better performance and

availability, CDNs also offload the traffic served directly

from the content provider's origin infrastructure, resulting

in possible cost savings for the content provider. In

addition, CDNs provide the content provider a degree of

protection from DoS attacks by using their large distributed

server infrastructure to absorb the attack traffic. While most
early CDNs served content using dedicated servers owned

and operated by the CDN, there is a recent trend to use a

hybrid model that uses P2P technology. In the hybrid

model, content is served using both dedicated servers and

other peer-user-owned computers as applicable. single

server distribution and CDN Scheme of distribution shown

in figure 1.

Fig 1: Single server distribution, CDN scheme of

distribution

1.1 Operation

 Most CDNs are operated as an application service

provider (ASP) on the Internet (also known as on-demand

software or software as a service). An increasing number of
Internet network owners have built their own CDNs to

improve on-net content delivery, reduce demand on their

own telecommunications infrastructure, and to generate

revenues from content customers. This might include

offering access to media streaming to internet service

subscribers. Some larger software companies such as

Microsoft build their own CDNs in tandem with their own

http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Data_centers
http://en.wikipedia.org/wiki/Data_centers
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Live_streaming
http://en.wikipedia.org/wiki/Live_streaming
http://en.wikipedia.org/wiki/Social_networks
http://en.wikipedia.org/wiki/Social_networks
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/Application_service_provider
http://en.wikipedia.org/wiki/Application_service_provider

http://www.ijcsjournal.com Volume 3, Issue 1, No 4, 2015. ISSN: 2348-6600

Reference ID: IJCS-087 PAGE NO: 499-503.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 500

Published by SK Research Group of Companies (SKRGC).

products. Examples include Microsoft

Azure CDN and Amazon Cloud Front.

 Here content (potentially multiple copies) may exist

on several servers. When a user makes a request to a CDN

hostname, DNS will resolve to an optimized server (based

on location, availability, cost, and other metrics) and that

server will handle the request.

1.2 Content Delivery Network Technology

 CDN nodes are usually deployed in multiple
locations, often over multiple backbones. Benefits include

reducing bandwidth costs, improving page load times, or

increasing global availability of content. The number of

nodes and servers making up a CDN varies, depending on

the architecture, some reaching thousands of nodes with

tens of thousands of servers on many remote points of

presence (PoPs). Others build a global network and have a

small number of geographical PoPs.

 Requests for content are typically algorithmically

directed to nodes that are optimal in some way. When

optimizing for performance, locations that are best for
serving content to the user may be chosen. This may be

measured by choosing locations that are the fewest hops,

the least number of network seconds away from the

requesting client, or the highest availability in terms of

server performance (both current and historical), so as to

optimize delivery across local networks. When optimizing

for cost, locations that are least expensive may be chosen

instead. In an optimal scenario, these two goals tend to

align, as servers that are close to the end-user at the edge of

the network may have an advantage in performance or cost.

 Most CDN providers will provide their services over

a varying, defined, set of PoPs, depending on the
geographic coverage desired, such as United States,

International or Global, Asia-Pacific, etc. These sets of

PoPs can be called "edges" or "edge networks" as they

would be the closest edge of CDN assets to the end user.

 The CDN's Edge Network grows outward from the

origin/s through further acquisitions (via purchase, peering,

or exchange) of co-locations facilities, bandwidth, and

servers.

1.3 Content networking techniques

 The Internet was designed according to the end-to-

end principle. This principle keeps the core network

relatively simple and moves the intelligence as much as

possible to the network end-points: the hosts and clients. As

a result the core network is specialized, simplified, and

optimized to only forward data packets.

 Content Delivery Networks augment the end-to-end

transport network by distributing on it a variety of

intelligent applications employing techniques designed to

optimize content delivery. The resulting tightly integrated

overlay uses web caching, server-load balancing, request

routing, and content services. These techniques are briefly

described below.

 Web caches store popular content on servers that
have the greatest demand for the content requested. These

shared network appliances reduce bandwidth requirements,

reduce server load, and improve the client response times

for content stored in the cache.

 Server-load balancing uses one or more techniques

including service-based (global load balancing) or

hardware-based, i.e. layer 4–7 switches, also known as a

web switch, content switch, or multilayer switch to share

traffic among a number of servers or web caches. Here the

switch is assigned a single virtual IP address. Traffic

arriving at the switch is then directed to one of the real web
servers attached to the switch. This has the advantage of

balancing load, increasing total capacity, improving

scalability, and providing increased reliability by

redistributing the load of a failed web server and providing

server health checks.

 A content cluster or service node can be formed using

a layer 4–7 switch to balance load across a number of

servers or a number of web caches within the network.

 Request routing directs client requests to the content

source best able to serve the request. This may involve

directing a client request to the service node that is closest

to the client, or to the one with the most capacity. A variety
of algorithms are used to route the request. These include

Global Server Load Balancing, DNS-based request routing,

Dynamic metafile generation, HTML rewriting, and any

casting. Proximity choosing the closest service node is

estimated using a variety of techniques including reactive

probing, proactive probing, and connection monitoring.

 CDNs use a variety of methods of content delivery

including, but not limited to, manual asset copying, active

web caches, and global hardware load balancers.

II. RECOMMENDED SYSTEM

 Routing in a CDN is usually concerned with the issue

of properly distributing client requests in order to achieve load

balancing among the servers involved in the distribution

http://en.wikipedia.org/wiki/Microsoft_Azure
http://en.wikipedia.org/wiki/Microsoft_Azure
http://en.wikipedia.org/wiki/Amazon_CloudFront
http://en.wikipedia.org/wiki/Internet_backbone
http://en.wikipedia.org/wiki/Points_of_presence
http://en.wikipedia.org/wiki/Points_of_presence
http://en.wikipedia.org/wiki/Hop_(networking)
http://en.wikipedia.org/wiki/Peering
http://en.wikipedia.org/wiki/End-to-end_principle
http://en.wikipedia.org/wiki/End-to-end_principle
http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/Web_cache
http://en.wikipedia.org/wiki/Multilayer_switch
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Web_servers
http://en.wikipedia.org/wiki/Web_servers
http://en.wikipedia.org/wiki/Anycast
http://en.wikipedia.org/wiki/Anycast

http://www.ijcsjournal.com Volume 3, Issue 1, No 4, 2015. ISSN: 2348-6600

Reference ID: IJCS-087 PAGE NO: 499-503.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 501

Published by SK Research Group of Companies (SKRGC).

network. Several mechanisms have been proposed in the

literature. They can usually be classified as either static or

dynamic, depending on the policy adopted for server selection.

 Static algorithms select a server without relying on

any

information about the status of the system at decision time.

Static algorithms do not need any data retrieval mechanism in

the system, which means no communication overhead is

introduced. These algorithms definitely represent the fastest

solution since they do not adopt any sophisticated selection

process. However, they are not able to effectively face
anomalous events like flash crowds.

 Dynamic load-balancing strategies represent a valid

alternative to static algorithms. Such approaches make use of

information coming either from the network or from the

servers in order to improve the request assignment process.

The selection of the appropriate server is done through a

collection and subsequent analysis of several parameters

extracted from the network elements. Hence, a data exchange

process among the servers is needed, which unavoidably

incurs in a communication overhead.

 The redirection mechanisms can be implemented
either in a centralized or in a distributed way. In the former, a

centralized element, usually called dispatcher, intercepts all

the requests generated into a well-known domain, for example

an autonomous system, and redirects them to the appropriate

server into the network by means of either a static or a

dynamic algorithm. Such an approach is usually adopted by

commercial CDN solutions. With a distributed redirection

mechanism, instead any server receiving a request can either

serve it or redistribute it to another server based on an

appropriate (static or dynamic) load-balancing solution.

 Depending on how the scheduler interacts with the

other components of the node, it is possible to classify the
balancing algorithms in three fundamental models a queue-

adjustment model, a rate-adjustment model, and a hybrid-

adjustment model.

 In a queue-adjustment strategy, the scheduler is

located after the queue and just before the server. The

scheduler might assign the request pulled out from the queue

to either the local server or a remote server depending on the

status of the system queues: If an unbalancing exists in the

network with respect to the local server, it might assign part of

the queued requests to the most unloaded

remote server. In this way, the algorithm tries to equally
balance the requests in the system queues. It is clear that in

order to achieve an effective load balancing, the scheduler

needs to periodically retrieve information about remote queue

lengths.

 In a rate-adjustment model, instead the scheduler is

located just before the local queue: Upon arrival of a new

request, the scheduler decides whether to assign it to the local

queue or send it to a remote server. Once a request is assigned

to a local queue, no remote rescheduling is allowed. Such a

strategy usually balances the request rate arriving at every

node independently from the current state of the queue. No

periodical information exchange, indeed, is requested.

 In a hybrid-adjustment strategy for load balancing,
the scheduler is allowed to control both the incoming request

rate at a node and the local queue length. Such an approach

allows to have a more efficient load balancing in a very

dynamic scenario, but at the same time it requires a more

complex algorithm. In the context of a hybrid-adjustment

mechanism, the queue-adjustment and the rate-adjustment

might be considered respectively as a fine-grained and a

coarse-grained process. Both centralized and distributed

solutions present pros and cons depending on the considered

scenario and the specific performance parameters evaluated.

As stated in, although in some cases the centralized solution
achieves lower response time, a fully distributed mechanism is

much more scalable. It is also robust in case of dispatcher

fault, as well as easier to implement. Finally, it imposes much

lower computational and communication overhead.

 In the following, we will describe the most common

algorithms used for load balancing in a CDN. Such algorithms

will be considered as benchmarks for the evaluation of the

solution we propose in this paper.

 The simplest static algorithm is the Random

balancing mechanism(RAND). In such a policy, the incoming

requests are distributed to the servers in the network with a

uniform probability. Another well-known static solution is the
Round Robin algorithm(RR). This algorithm selects a

different server for each incoming request in a cyclic mode.

Each server is loaded with the same number of requests

without making any assumption on the state, neither of the

network nor of the servers.

 he Least-Loaded algorithm (LL) is a well-known

dynamic strategy for load balancing. It assigns the incoming

client request to the currently least loaded server. Such an

approach is adopted in several commercial solutions.

Unfortunately, it tends to rapidly saturate the least loaded

server until a new message is propagated. Alternative
solutions can rely on Response Time to select the server: The

request is assigned to the server that shows the fastest

response time.

http://www.ijcsjournal.com Volume 3, Issue 1, No 4, 2015. ISSN: 2348-6600

Reference ID: IJCS-087 PAGE NO: 499-503.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 502

Published by SK Research Group of Companies (SKRGC).

 The Two Random Choices algorithm(2RC) randomly

chooses two servers and assigns the request to the least loaded

one between them. A modified version of such an algorithm is

the Next-Neighbor Load Sharing. Instead of selecting two

random servers, this algorithm just randomly selects one

server and assigns the request to either that server or its

neighbor based on their respective loads (the least loaded

server is chosen).

 In Section III, we will present an alternative solution

for load balancing, falling in the class of rate-adjustment

approaches. We propose a highly dynamic distributed strategy
based on the periodical exchange of information about the

status of the nodes in terms of load. By exploiting the multiple

redirection mechanism offered by HTTP, our algorithm tries

to achieve a global balancing through a local request

redistribution process.

 Upon arrival of a new request, indeed, a CDN server

can either elaborate locally the request or redirect it to other

servers according to a certain decision rule, which is based on

the state information exchanged by the servers. Such an

approach limits state exchanging overhead to just local

servers.

III. Load-Balanced CDN: Model Formulation

 In this section, we will introduce a continuous model

of a CDN infrastructure, used to design a novel load balancing

law. The CDN can be considered as a set of servers each with

its own queue. We assume a fluid model approximation for

the dynamic behavior of each queue. We extend this model

also to the overall CDN system. Such approximation of a

stochastic system.

 Actually, this approximation cannot be exploited in a

real scenario: The requests arrive and leave the server at
discrete times ,hence in a given time interval, a discrete

number of re- quests arrives at and departs from each server in

the system case in a real packet network where the processing

of arriving requests is not continuous over time.. The objective

is to derive an algorithm that presents the main features of the

proposed load-balancing law and arrives at the same results in

terms of system equilibrium through proper balancing of

servers’ loads, as assessed by Lemma.

IV. Proposed Distributed Load Balancing Algorithm

 The implemented algorithm consists of two

independent parts: a procedure that is in charge of updating

the status of the neighbor's load, and a mechanism

representing the core of the algorithm, which is in charge of

distributing requests to a node’s neighbors' based on servers.

In the pseudo code of the algorithm is reported. Even though

the communication protocol used for status in-formation

exchange is fundamental for the balancing process, in this

paper we will not focus on it. Indeed, for our simulation tests,

we implemented a specific mechanism:

 We extended the HTTP protocol with a new message,

called CDN, which is periodically exchanged among

neighboring peers to carry information about the current load

status of the sending node. Naturally, a common update
interval should be adopted to guarantee synchronization

among all interacting peers. For this purpose, a number of

alternative solutions can be put into place, in which are

nonetheless out of the scope of the present work. Every

second, the server sends its status information to its neighbors

and, at the same time, waits for their information. After a well-

defined interval, the server launches the status up- date

process. We suppose all the information about peers’ load is

already available during such a process.

Algorithm:

//peer status update

prob_space [0]=0;load_diff=0;load_diff_sum=0;

for(j=1;j<=n;j++){

 if(load_i -peer[j].load){

 load_diff=load_i-peer[j].load;

 build_prob_space(load_diff,prob_space);

 load_diff_sum=load_diff_sum+load_diff; }

 update_prob_space(load_diff_sum,prob_space);

}

//balancing process
if(prob_space[]==null)

 server_request();

else{

 float x=rand();

 int req_sent=0;int i=0;

 while(prob_space[i]==1 or req_sent==1){

 if(prob_space[i-1]<=x<prob<prob_space[i]){

 send_to(peer[i-1].addr);

 req_sent=1;

 }

 i++;
 }

}

http://www.ijcsjournal.com Volume 3, Issue 1, No 4, 2015. ISSN: 2348-6600

Reference ID: IJCS-087 PAGE NO: 499-503.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 503

Published by SK Research Group of Companies (SKRGC).

V.CONCLUSION

 In this paper, we presented a novel load-balancing

law for cooperative CDN networks. We first defined a model

of such networks based on a fluid flow characterization. We

hence moved to the definition of an algorithm that aims at

achieving load balancing in the network by removing local

queue instability conditions through redistribution of potential

excess traffic to the set of neighbors of the congested server.

The algorithm is first introduced in its time-continuous
formulation and then put in a discrete version specifically

conceived for its actual implementation and deployment in an

operational scenario. Through the help of simulations, we

demonstrated both the scalability and the effectiveness of our

proposal, which outperforms most of the potential alternatives

that have been proposed in the past. The present work

represents for us a first step toward the realization of a

complete solution for load balancing in a cooperative,

Distributed environment.

VI.REFERENCES

[1] S. Manfredi, F. Oliviero, and S. P. Romano, “Distributed

management for load balancing in content delivery networks,” in
Proc. IEEE GLOBECOM Workshop, Miami, FL, Dec. 2010, pp.
579–583.

[2] H. Yin, X. Liu, G. Min, and C. Lin, “Content delivery networks:
A Bridge between emerging applications and future IP networks,”
IEEE Netw., vol. 24, no. 4, pp. 52–56, Jul.–Aug. 2010.

[3] J. D. Pineda and C. P. Salvador, “On using content delivery
networks to improve MOG performance,” Int. J. Adv. Media
Commun., vol. 4, no. 2, pp. 182–201, Mar. 2010.

[4] D. D. Sorte,M. Femminella, A. Parisi, andG. Reali, “Network
delivery of live events in a digital cinema scenario,” in Proc.
ONDM,Mar. 2008, pp. 1–6.

[5] M. Colajanni, P. S. Yu, and D. M. Dias, “Analysis of task
assignment policies in scalable distributed Web-server systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 6, pp. 585–600, Jun.
1998.

[6] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari, “A scalable
and highly availableWeb server,” in Proc. IEEE Comput. Conf., Feb.
1996, pp. 85–92.68 IEEE/ACM TRANSACTIONS ON

NETWORKING, VOL. 21, NO. 1, FEBRUARY 2013.

[7] C. V. Hollot, V. Misra,D. Towsley, andW.Gong, “Analysis and

design of controllers for AQM routers supporting TCP flows,” IEEE
Trans.Autom. Control, vol. 47, no. 6, pp. 945–959, Jun. 2002.

[8] C. V. Hollot, V. Misra, D. Towsley, and W. bo Gong, “A control
theoretic analysis of red,” in Proc. IEEE INFOCOM, 2001, pp. 1510–
1519.

[9] J. Aweya, M. Ouellette, and D. Y. Montuno, “A control theoretic
approach to active queue management,” Comput. Netw., vol. 36, no.

2–3, pp. 203–235, Jul. 2001.

