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Abstract—Clustering is an unsupervised process of grouping 

elements together, so that elements assigned to the same cluster 

are more similar to each other than to the remaining data points. 

High-dimensional data takes place in many fields. Clustering 

process is because of sparsity, also growing complexity in unique 

distances between data points. Here capture an original 

perception on the trouble of clustering high-dimensional data. 

To neglect the curse of dimensionality by scrutinizing a lower 

dimensional feature subspace, hold dimensionality by taking 

advantage of inherently high-dimensional phenomena. 

Exclusively, using hubness. Validate our hypothesis by 

demonstrating that hubness is a good measure of point centrality 

within a high-dimensional data cluster, and by proposing several 

hubness-based clustering algorithms, showing that major hubs 

can be used effectively as cluster prototypes or as guides during 

the search for centroid-based cluster configurations. The 

proposed method called “Neighbor clustering”, which takes as 

input measures of correspondence between pairs of data points. 

Experimental results demonstrate good performance of our 

algorithms in multiple settings,      
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1 INTRODUCTION 

Clustering in general is an unsupervised process of 

grouping elements together, so that elements assigned to 

the same cluster are more similar to each other than to the 

remaining data points [1].this goal is often difficult to 

achieve in practice. Over the years, various clustering 

algorithms have been proposed, which can be roughly 

divided into four groups: partitional, hierarchical, density 

based, and subspace algorithms. Algorithms from the 

fourth group search for clusters in some lower dimensional 

projection of the original data, and have been generally 

preferred when dealing with data that are high dimensional 
[2], [3], [4], [5]. The motivation for this preference lies in 

the observation that having more dimensions usually leads 

to the so-called curse of dimensionality, where the 

performance of many standard machine-learning 

algorithms becomes impaired. This is mostly due to two 

pervasive effects: the empty space phenomenon and 

concentration of distances. The former refers to the fact 

that all high-dimensional data sets tend to be sparse, 

because the number of points required to represent any 

distribution grows exponentially with the number of 

dimensions. This leads to bad density estimates for high-

dimensional data, causing difficulties for densitybased 
approaches. The latter is a somewhat counterintuitive 

property of high dimensional data representations, where 

all distances between data points tend to become harder to 

distinguish as dimensionality increases, which can cause 

problems with distance-based algorithms.  

The difficulties in dealing with high dimensional data are 

omnipresent and abundant. However, not all phenomena that 
arise are necessarily detrimental to clustering techniques. We 
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will show in this paper that hubness, which is the tendency 

of some data points in high-dimensional data sets to occur 

much more frequently in k-nearest neighbor lists of other 

points than the rest of the points from the set, can in fact be 

used for clustering. To our knowledge, this has not been 

previously attempted. In a limited sense, hubs in graphs have 

been used to represent typical word meanings in which were 

not used for data clustering. A similar line of research has 

identified essential proteins as hubs in the reverse nearest 

neighbor topology of protein interaction networks. We have 

focused on exploring the potential value of using hub points 
in clustering by designing hubness-aware clustering 

algorithms and testing them in a high-dimensional context. 

The hubness phenomenon and its relation to clustering will 

be further addressed  

There are two main contributions of this paper. First, in 

experiments on synthetic data we show that hubness is a 

good measure of point centrality within a high dimensional 
data cluster and that major hubs can be used effectively as 

cluster prototypes. In addition, we propose three new 

clustering algorithms and evaluate their performance in 

various high dimensional clustering tasks. We compared the 

algorithms with a baseline state-of-the-art prototype based 

method (K-means++), as well as kernel-based and density-

based approaches. The evaluation shows that our algorithms 

frequently offer improvements in cluster quality and 

homogeneity. The comparison with kernel K means reveals 

that kernel-based extensions of the initial approaches should 

also be considered in the future. Our current focus was 
mostly on properly selecting cluster prototypes, with the 

proposed methods tailored for detecting approximately hyper 

spherical clusters. The rest of the paper is structured as 

follows: In the next section, we present the related work, 

discusses in general the phenomenon of hubness, while 

describes the proposed algorithms that are exploiting hubness 

for data clustering. Presents the experiments we performed 

on both synthetic and real-world data. We expect our 

observations and approach to open numerous directions for 

further research, many of which are outlined by our final 

remarks  

 
2 RELATED WORKS 

Even though hubness has not been given much attention in 
data clustering, hubness information is drawn from k nearest 

neighbor lists, which have been used in the past to perform 

clustering in various ways. These lists may be used for 

computing density estimates, by observing the volume of 

space determined by the k-nearest neighbors. Density based 

clustering methods often rely on this kind of density 

estimation the implicit assumption made by densitybased 

algorithms is that clusters exist as high density regions 

separated from each other by low-density regions. In high-

dimensional spaces this is often difficult to estimate, due to 
data being very sparse. There is also the issue of choosing the 

proper neighborhood size, since both small and large values 

of k can cause problems for density based approaches 

enforcing k-nearest-neighbor consistency in algorithms such 

as k-means was also explored the most typical usage of k-

nearest-neighbor lists, however, is to construct a k-nn graph 

[19] and reduce the problem to that of graph clustering. 

Consequences and applications of hubness have been more 

thoroughly investigated in other related fields: classification 

image feature representation data reduction  collaborative 

filtering, text retrieval and music retrieval . In many of these 
studies it was shown that hubs can offer valuable information 

that can be used to improve existing methods and devise new 

algorithms for the given task. Finally, the interplay between 

clustering and hubness was briefly examined in [23], where it 

was observed that hubs may not cluster well using 

conventional prototype-based clustering algorithms, since 

they not only tend to be close to points belonging to the same 

cluster (i.e., have low intracluster distance) but also tend to be 

close to points assigned to other clusters (low intercluster 

distance). Hubs can, therefore, be viewed as (opposing) 

analogues of outliers, which have high inter- and intra cluster 

distance, suggesting that hubs should also receive special 
attention [23]. In this paper, we have adopted the approach of 

using hubs as cluster prototypes and/or guiding points during 

prototype search. 

3 THE HUBNESS PHENOMENON 

Hubness is an aspect of the curse of dimensionality pertaining 

to nearest neighbors which has only recently come to 

attention, unlike the much discussed distance concentration 
phenomenon. Let D _ IRd be a set of data points and let 

NkðxÞ denote the number of k-occurrences of point x 2 D, 

i.e., the number of times x occurs in k-nearest neighbor lists 

of other points from D. As the dimensionality of data 

increases, the distribution of k-occurrences becomes 

considerably skewed .As a consequence, some data points, 
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which we will refer to as hubs, are included in many more k-

nearest-neighbor lists than other points. In the rest of the text, 

we will refer to the number of k-occurrences of point x € D as 

its hubness score. It has been shown that hubness, as a 

phenomenon, appears in high-dimensional data as an inherent 

property of high dimensionality, and is neither an artifact of 

finite samples nor a peculiarity of some specific data sets . 

Naturally, the exact degree of hubness may still vary and is 

not uniquely determined by dimensionality.  

 

3.1 Emergence of Hubs  

The concentration of distances enables one to view 
unimodal high-dimensional data as lying approximately on a 

hyper sphere cantered at the data distribution mean. However, 

the variance of distances to the mean remains non negligible 

for any finite number of dimensions , which implies that some 

of the points still end up being closer to the data mean than 

other points. It is well known that points closer to the mean 

tend to be closer (on average) to all other points, for any 

observed dimensionality. In high-dimensional data, this 

tendency is amplified. Such points will have a higher 

probability of being included in knearest-neighbor lists of 
other points in the data set, which increases their influence, 

and they emerge as neighbour-hubs. It was established that 

hubs also exist in clustered (multimodal) data, tending to be 

situated in the proximity of cluster centers . In addition, the 

degree of hubness does not depend on the embedding 

dimensionality, but rather on the intrinsic data dimensionality, 

which is viewed as the minimal number of variables needed to 

account for all pair wise distances in the data 

 

F.1 Evolition of mimal and maximal distance from 
centroids to hubs and medoies on synthetic data for 

neighborhood size 10, and 10 clusters. 

 
Data regardless of the distance or similarity measure 

employed. Its existence was verified for Euclidean((l2)) and 

Manhattan (l1) distances, lp distances with p > 2, fractional 

distances (lp with rational p €(0,1) Bray-Curtis, normalized 

Euclidean, and Canberra distances, cosine similarity, and the 

dynamic time warping distance for time series.  In this paper, 

unless Otherwise stated, we will assume the Euclidean 

distance. The methods we propose in Section 4, however, 

depend mostly on neighborhood relations that are derived 

from the distance matrix and are, therefore, independent of 
the particular choice of distance measure.   

Before continuing, we should clearly define what 

constitutes a hub. Similarly to we will say that hubs are points 
x having Nk(x) more than two standard deviations higher than 

the expected value k (in other words, significantly above 

average). However, in most experiments that follow, we will 

only concern ourselves with one major hub in each cluster, 

i.e., the point with the highest hubness score. 

3.2 Relation of Hubs to Data Clusters  

There has been previous work on how well high-hubness 

elements cluster, as well as the general impact of hubness on 

clustering algorithms. A correlation between low hubness 

elements (i.e., antihubs or orphans)   and outliers were also 

observed. A lowhubness score indicates that a point is on 

average far from the rest of the points and hence probably an 
outlier. In high dimensional spaces, however, low-hubness 

elements are expected to occur by the very  

Nature of these spaces and data distributions. These data 

points will lead to an average increase in intra cluster 

distance. It was also shown for several clustering algorithms 

that hubs do not cluster well compared to the rest of the 

points. This is due to the fact that some hubs are actually 

close to points in different clusters. Hence, they lead to a 
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decrease in inter cluster distance. This has been observed on 

real data sets clustered using state-of-the-art prototype based 

methods, and was identified as a possible area for 

performance improvement. We will revisit this point in 

Section 5.4.  

It was already mentioned that point’s closer to cluster means 

tend to have higher hubness scores than other points. A 

natural question which arises is: Are hubs medoids? When 

observing the problem from the perspective of partitioning 

clustering approaches, of which K-means is the most 

commonly used representative, a similar question might also 

be posed: Are hubs the closest points to data centroid in 

clustering iterations? To answer this question, we ran K-

means++ multiple times on several randomly generated 
10,000-point Gaussian mixtures for various fixed numbers of 

dimensions (2, 5, 10, 20, 30, 50, 100), observing the high-

dimensional case. We measured in each iteration the distance 

from current cluster centroid to the medoid and to the 

strongest hub, and scaled by the average intracluster distance. 

This was measured for every cluster in all the iterations, and 

for each iteration the minimal and maximal distance from any 

of the centroids to the corresponding hub and medoid was 

computed. Fig. 1 gives example plots of how these ratios 

evolve through iterations for the case of 10-cluster data, using 

neighborhood size 10, with 30 dimensions for the high 

dimensional case, and two dimensions to illustrate low 
dimensional Behavior. The Gaussian mixtures were generated 

randomly by drawing the centers from a ½lbound; unbounded 

uniform distribution (as well as covariance matrices, with 

somewhat tighter bounds). In the low-dimensional case, hubs 

in the clusters are far away from the centroid, even farther 

than average points. There is no correlation between cluster 

means and frequent neighbors in the low dimensional context. 

This changes with the increase in dimensionality, as we 

observe that the minimal distance from centroid to hub 

converges to minimal distance from centroid to medoid. This 

implies that some medoids are in fact cluster hubs. Maximal 
distances to hubs and medoids, however, do not match. There 

exist hubs which are not medoids, and vice versa. Also, we 

observe that maximal distance to hubs drops with iterations, 

suggesting that as the iterations progress, centroid are 

becoming closer and to data hubs. This already hints at a 

possibility of developing an iterative approximation 

procedure. To complement the above observations and 

explore the interaction between hubs, medoids, and the classic 

notion of  

Density and illustrate the different relationships they exhibit 

in low- and high dimensional settings, we performed  

Additional   simulations. For a given number of dimensions (5 

or 100), we generated a random Gaussian distribution 

centered around zero and started drawing random points from 

the distribution one by one, adding them sequentially to a 

synthetic data set. As the points were being added,  

hubness, densities, distance contrast, and all the other 

examined quantities and correlations between them (most of 

which are shown in Figs. 2 and 3) were calculated on the fly 

for all the neighborhood sizes within the specified range f1; 2; 
. . . ; 20g. The data sets started with 25 points initially and 

were grown to a size of 5,000. The entire process was 

repeated 20 times, thus in the end we considered 20 synthetic 

five dimensional Gaussian distributions and 20 synthetic 100-

dimensional Gaussian distributions. Figs. 2 and 3 display 

averages taken over all the runs.1 we report results with 

Euclidean distance, observing similar trends with Manhattan 

and l0:5 distances. Fig. 2 illustrates the interaction between 

norm, hubness, and density (as the measurement, not the 

absolute term) in the simulated setting. From the definition of 

the setting, the norm of a point can be viewed as an “oracle” 
that expresses exactly the position of the point with respect to 

the cluster center.2 as can be seen in Fig. 2a, strong Pearson 

correlation between the density measurement and norm 

indicates that in low dimensions density pinpoints the location 

of the cluster center with great accuracy. In high dimensions, 

however. 

 

4 EXPERIMENTS AND EVALUATION 

We tested our approach on various high dimensional 

synthetic and real-world data sets. We will use the following 

abbreviations in the forthcoming discussion: K Means (KM), 

kernel K-means (ker-KM), Global K-Hubs (GKH), Local K-
Hubs (LKH), Global Hubness-Proportional Clustering 

(GHPC ) and Local Hubness Proportional Clustering (LHPC), 

Hubness Proportional K-Means (HPKM ), local and global 

referring to the type of hubness score that was used (see 

Section 4). For all centroid-based algorithms, including KM, 

we used the D2 (K-means++) initialization procedure [12].4 

The neighborhood size of k ¼ 10 were used by default in our 

experiments involving synthetic data and we have 

experimented with different neighborhood size in different 

real-world tests. There is no known way of selecting the best 

k for finding neighbor sets, the problem being domain-
specific. To check how the choice of k reflects on hubness 

based clustering, we Ran a series of tests on a fixed 50-
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dimensional 10- distribution Gaussian mixture for a range of 

k values, k 2 f1; 2; . . . ; 20g. The results are summarized in 

Fig. 6. It is clear that, at least in such simple data, the 

hubness-based GHPC algorithm is not overly sensitive on the 

choice of k. In the following sections, K means++ will be 

used as the main baseline for comparisons, since it is suitable 

for determining the feasibility of using hubness to estimate 

local centrality of points. Additionally, we will also compare 

the proposed algorithms to kernel K-means [13] and one 

standard density-based method, GDBScan [37]. Kernel K-

means was used with the nonparametric histogram 
intersection kernel, as it is believed to be good for image 

clustering and most of our real-world data tests were done on 

various sorts of image data. Kernel methods are naturally 

much more powerful, since they can handle non hyper 

spherical clusters. Yet, the hubness-based methods could just 

as easily be “kernel zed,” pretty much the same way it was 

done for K-means. This idea requires further tests and is 

beyond the scope of this paper. For evaluation, we used 

repeated random sub sampling, training the models on 70 

percent of the data and testing them on the remaining 30 

percent. This was done to reduce the potential impact of over 
fitting, even though it is not a major issue in clustering, as 

clustering is mostly used for pattern detection and not 

prediction. On the other hand, we would like to be able to use 

the clustering methods not only for detecting groups in a 

given sample, but rather for detecting the underlying structure 

of the data distribution in general.  

 

4.1 Synthetic Data: Gaussian Mixtures  

 

In the first batch of experiments, we wanted to compare 

the value of global versus local hubness scores. These initial 

tests were run on synthetic data and do not include HPKM, as 

the hybrid approach was introduced later for tackling 

problems on real-world data. For comparing the resulting 

clustering quality, we used mainly the silhouette index as an 

unsupervised measure of configuration validity, and average 

cluster entropy as a Supervised measure of clustering 
homogeneity. Since most of the generated data sets are 

“solvable,” i.e., consist of non-overlapping Gaussian 

distributions, we also report the normalized frequency with 

which the algorithms were able to find these perfect 

configurations. We ran two lines of experiments, one using 

five Gaussian generators, the other using 10. For each of 

these, we generated data of 10 different high dimensionalities: 

10, 20, . . . , 100. In each case, 10 different Gaussian mixtures 

were generated, resulting in 200 different generic sets, 100 of 

them containing five data clusters, the others containing 10. 

On each of the data sets, KM++ and all of the hubbased 

algorithms were executed 30 times and the averages of 

performance measures were computed. The generated 

Gaussian distributions were hyper spherical  bound ¼ 20 and 

the standard deviations were also uniformly taken from ½l_ 

that are significantly better than others, in the sense of having 

no overlap of surrounding one standard deviation intervals.) 

Global hubness is definitely to be preferred, especially in the 

presence of more clusters, which further restrict neighbor sets 
in the case of local hubness scores. Probabilistic approaches 

significantly outperform the deterministic ones, even though 

GKH and LKH also sometimes converge to the best 

configurations, but much less frequently. More importantly, 

the best overall algorithm in these tests was GHPC, which 

outperformed KM++ on all basis, having lower average 

entropy, a higher silhouette index, and a much higher 

frequency of finding the perfect configuration. This suggests 

that GHPC is a good option for clustering high-dimensional 

Gaussian mixtures. Regarding the number of dimensions 

when the actual improvements begin to show, in our lower 
dimensional test runs, GHPC was better already on 

6dimensional mixtures. Since we concluded that using global 

hubness leads to better results, we only consider GKH and 

GHPC in the rest of the experiments.  

 

4.2 Clustering and High Noise Levels  

 

Real-world data often contain noisy or erroneous values 

due to the nature of the data-collecting process. It can be 

assumed that hub-based algorithms will be more robust with 

respect to noise, since hubness proportional search is driven 

mostly by the highest-hubness elements, not the outliers. In 

the case of KM++, all instances from the current cluster 
directly determine the location of the centroid in the next 

iteration. When the noise level is low, some sort of Outlier 

removal technique may be applied. In setups involving high 

levels of noise, this may not be the case. To test this 

hypothesis, we generated two data sets of 10,000 instances as 

a mixture of 20 clearly separated Gaussians, farther away 

from each other than in the previously described experiments. 

The first data set was 10 dimensional and the second 50 

dimensional. In both cases, individual distribution centers 

were drawn independently from the uniform ½lm bound; um 

bounded distribution, Cluster sizes were imbalanced. Without 

noise, both of these data sets represented quite easy clustering 
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problems, all of the algorithms being able to solve them very 

effectively. This is, regardless, a more challenging task than 

we had previously addressed [38], by virtue of having a larger 

number of clusters. To this data we incrementally added 

noise, 250 instances at a time, drawn from a uniform 

distribution on hypercube data points. The hypercube was 

much larger than the space containing the rest of the points. In 

other words, clusters Were immersed in uniform noise. The 

highest level of noise for which we tested was the case when 

there were an equal number of actual data instances in 

original clusters. 
 

4.3 Experiments on Real-World Data  

 

Real-world data are usually much more complex and 

difficult to cluster; therefore such tests are of a higher 

practical significance. As not all data exhibit hubness, we 

tested the algorithms both on intrinsically high-dimensional, 

high-hubness data and intrinsically low-to-medium 

dimensional, low-hubness data. There were two different 

experimental setups. In the first setup, a single data set was 

clustered for many different K-s (number of clusters), to see if 

there is any difference when the number of clusters is varied. 

In the second setup, 20 different data sets were all clustered 
by the number of classes in the data (the number of different 

labels). The clustering quality in these experiments was 

measured by two quality indices, the silhouette index and the 

isolation index which measures a percentage of k-neighbor 

points that are clustered together. In the first experimental 

setup, the two-part Miss- was used for evaluation. Each part 

consists of 6,480 instances having 16 dimensions. Results 

were compared for various predefined numbers of clusters in 

algorithm calls. Each algorithm was tested 50 times for each 

number of clusters. Neighborhood size was 5. The results for 

both parts of the data set are given in. GHPC clearly 
outperformed KM and other hubness-based methods. This 

shows that hubs can serve as good cluster center prototypes. 

On the other hand, hyper spherical methods have their limits 

and kernel K means achieved the best overall cluster quality 

on this data set. Only one quality estimate is given for 

GDBScan, as it automatically determines the number of 

clusters on its own. As mostly low-tomediumhubness data 

(with the exception of spam base), we have taken several UCI 

data Sets Values of all the individual features in the data sets 

were normalized prior to testing. The data sets were mostly 

simple, composed only of a few clusters. The value of k was 

set to 20. The results are shown in the first parts of In the 

absence of hubness, 6 purelyhubness-based. 

 

5 CONCLUSIONS AND FUTUREWORK 

 

Using hubness for data clustering has not previously been 

attempted. We have shown that using hubs to approximate 

local data centers is not only a feasible option, but also 
frequently leads to improvement over the centroid-based 

approach. The proposed GHPKM method had proven to be 

more robust than the K-Means++ baseline on both synthetic 

and real-world data, as well as in the presence of high levels 

of artificially introduced noise. This initial evaluation 

suggests that using hubs both as cluster prototypes and points 

guiding the centroid based search is a promising new idea in 

clustering high-dimensional and noisy data. Also, global 

hubness estimates are generally to be preferred with respect to 

the local ones. Hub-based algorithms are designed specifically 

for high dimensional data. This is an unusual property, since 
the performance of most standard clustering algorithms 

deteriorates with an increase of dimensionality. Hubness, on 

the other hand, [1]K. Kialing, H.-P. Krieger, P. Kroger, and  

S. Wanka (2003), “Ranking Interesting Subspaces for 

Clustering High Dimensional Data,”Proc. 7th European Conf. 

Principles and PKDD is a property of intrinsically high- 

dimensional data, and this is precisely where GHPKM and 

GHPC excel, and are expected to offer improvement by 

providing higher Inter cluster distance, i.e., better cluster 

separation.  
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