

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1758

Exploring Key Aspects of Computational Thinking

M. Janaki

Assistant Professor, Department of Computer Science,

Dr. Umayal Ramanathan College for Women, Karaikudi.

Abstract

Computational Thinking is a collection of diverse

skills to do with problem solving which results

from the nature of computation. It involves specific

problem solving skills such as the ability to think

logically, algorithmically and recursively.

Computational thinking is a fundamental skill for

everyone, not only for computer scientists. We

should add computational thinking to every child‘s

analytical ability. Computational thinking involves

solving problems, designing systems, and

understanding human behaviour, by drawing on the

concepts fundamental to computer science. This

paper describes the four key aspects of

computational thinking that includes

decomposition, pattern recognition, abstraction and

algorithms in detail. It talks about why algorithms

created through computational thinking need to be

evaluated. It also describes a technique called dry

run which is used to evaluate solutions before

programming. This term has been much discussed

amongst educationalists all over the world to grips

with a new computing curriculum designed to

equip students with such skills, and to reduce the

skills gap between education and the workplace.

Index Terms: Problem Solving, Analytical

Ability, Abstraction, Decomposition, Pattern

Recognition, Algorithms, Dry Run.

1. Introduction

Computational thinking is a basic skill for

everyone, not only for computer scientists. I is

essential to add computational thinking to every

child‘s analytical ability. Computational thinking

involves solving problems, designing systems, and

understanding human behaviour, by drawing on the

fundamental concepts to computer science.

Computational thinking includes a range of mental

tools that reflect the breadth of the field of

computer science [4]. To solve a problem, two

important things are way to find the best solution

and to know the complexity of finding solution.

Computer science rests on solid theoretical

underpinnings to answer such things precisely. We

must consider the machine‘s instruction set, its

resource constraints, and its operating environment.

Computer science is the study of computation—

what is computed and how is computed.

Computational thinking thus has the following

behaviour: Viewpoint Thinking like a computer

scientist means more than being able to program a

computer. It requires thinking at multiple levels of

abstraction. Computational thinking is a way

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1759

humans solve problems; it is not trying to get

humans to think like computers. Computers are

dull and boring; humans are clever and

imaginative. We humans make computers exciting.

Equipped with computing devices, we use our

intelligence to tackle problems we would not dare

take on before the age of computing and build

systems with functionality limited only by our

imaginations; Complements and combines

mathematical and engineering thinking.

Computational thinking will be a reality when it is

so integral to human endeavours, it disappears as

an explicit philosophy. Many people equate

computer science with computer programming.

Some parents see only a narrow range of job

opportunities for their children who major in

computer science. Many people think the

fundamental research in computer science is done

and that only the engineering remains.

Computational thinking is a grand vision to guide

computer science educators, researchers, and

practitioners as we act to change society‘s image of

the field.

2. Literature Review

Jeffy Krameris said "I believe that abstraction is a

key skill for computing". It is essential during

requirements engineering to elicit the critical

aspects of the environment and required system

while neglecting the unimportant. At design time,

we must articulate the software architecture and

component functionalities that satisfy functional

and non-functional requirements while avoiding

unnecessary implementation constraints. Even at

the implementation stage we use data abstraction

and classes so as to generalize solutions [1].

 Alan Bundy described in his paper as

Computational thinking is influencing research in

nearly all disciplines, both in the sciences and the

humanities. Researchers are using computational

metaphors to enrich theories as diverse as

protoeomics and the mind-body problem.

Computing has enabled researchers to ask new

kinds of questions and to accept new kinds of

answers, for instance, questions that require the

processing of huge amounts of data [2].

Vincent Conitzer has summarized in his article as

a number of applications where computer scientists

have already become involved in the design of

markets and other protocols for making decisions

based on the preferences of multiple agents. I

anticipate that the number and importance of such

applications will grow steeply in the years to come.

One major reason for this is that computer

scientists and economists interested in market

design have grown closer together in recent years,

and are now seen working together more often (this

is necessitated by high value applications such as

sponsored search auctions). Computer scientists

have caught up on many of the key techniques

developed in the microeconomics theory literature.

On the other side, economists are becoming

increasingly familiar with techniques from modern

computer science. This is a very nice example

where ―computational thinking‖ is being exported

to another discipline (which is certainly not to say

that there were no prior instances of economists

thinking computationally) [3].

3. Characteristics of Computational Thinking

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1760

Computational thinking is thinking in terms of

prevention, protection, and recovery from worst-

case scenarios through redundancy, damage

containment, and error correction. Computational

thinking is using heuristic reasoning to find a

solution. It is planning, learning, and scheduling in

the presence of uncertainty. It has the following

characteristics,

 Computational thinking is thinking

recursively.

 It is parallel processing.

 It is interpreting code as data and data as

code.

 It is type checking as the generalization of

dimensional analysis.

 It is recognizing both the cost and power of

indirect addressing and procedure call.

 It is separation of concerns.

 It is choosing an appropriate representation

for a problem.

Thinking computationally is not programming. It is

not even thinking like a computer. Computational

thinking enables you to work out exactly what to

tell the computer to do. For example, if you want

to go on a tour somewhere you have never been

before, you would probably plan your route before

you step out of your house. You might consider the

routes available and which route is ‗best‘ - this

might be the route that is the shortest, the quickest.

You'd then follow the step-by-step directions to get

there [7]. In this case, the planning part is like

computational thinking, and following the

directions is like programming. Being able to turn a

complex problem into one we can easily

understand is a skill that is extremely useful. In

fact, it's a skill you already have and probably use

every day. It might be that you need to decide what

to do with your family. If all of you like different

things, you would need to decide:

 What you could do?

 Where you could go?

 Who wants to do what?

 What you have previously done that has

been a success in the past?

 How much money you have and the cost

of any of the options?

 What the weather might be doing?

 How much time you have?

From this information, you and your family could

decide more easily where to go and what to do – in

order to keep most of your family members happy.

You could also use a computer to help you to

collect and analyse the data to devise the best

solution to the problem, both now and if it arose

again in the future, if you wished.

4. Key Techniques of Computational Thinking

Computers can be used to help us solve problems.

Before solving a problem, the problem itself and

the ways in which it could be solved need to be

understood [5]. Computational thinking helps us to

do this. Computational thinking allows us to take a

complex problem, understand what the problem is

and develop possible solutions. We can then

present these solutions in a way that a computer, a

human, or both, can understand.

There are four key techniques (cornerstones) to

computational thinking:

http://www.bbc.co.uk/education/guides/zp92mp3/revision/2#glossary-zggscdm

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1761

1. decomposition - breaking down a

complex problem into smaller, more

manageable parts

2. pattern recognition – looking for

similarities within problems

3. abstraction – focusing on the important

information by ignoring irrelevant detail

4. algorithms - developing a step-by-step

solution to the problem

Each cornerstone is as important as the others.

They are like legs of a chair - if one leg is missing,

the chair will probably collapse. Correctly applying

all four techniques will help us to find the correct

solution for a problem when programming a

computer.

A complex problem is one that, at first glance, we

don't know how to solve easily. Computational

thinking involves following steps to find the best

solution.

Step 1: Taking that complex problem and breaking

it down into a series of small, more manageable

problems (decomposition).

Step 2: Each of these smaller problems can then be

looked at individually, considering how similar

problems have been solved previously (pattern

recognition).

Step 3: Focusing only on the important details,

while ignoring irrelevant information

(abstraction).

Step 4: Simple steps or rules to solve each of the

smaller problems can be designed (algorithms).

Step 5: These simple steps or rules are used

to program a computer to help solve the complex

problem in the best way.

I. 4.1 DECOMPOSITION

Decomposition is the technique which involves

breaking down a complex problem or system

into smaller parts that are more manageable

and easier to understand. The smaller parts can

http://www.bbc.co.uk/education/guides/zp92mp3/revision#glossary-zp8thyc
http://www.bbc.co.uk/education/guides/zp92mp3/revision#glossary-zswpn39
http://www.bbc.co.uk/education/guides/zp92mp3/revision#glossary-zt9x6sg
http://www.bbc.co.uk/education/guides/zp92mp3/revision#glossary-z8d3d2p
http://www.bbc.co.uk/education/guides/zp92mp3/revision#glossary-zbbnr82

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1762

then be examined and solved, or designed

individually, as they are simpler to work with [8].

If a problem is not decomposed, it is much harder

to solve. Breaking the problem down into smaller

parts means that each smaller problem can be

examined in more detail. Similarly, trying to

understand how a complex system works is easier

using decomposition. For example, understanding

how a bicycle works is more straightforward if the

whole cycle is separated into smaller parts and

each part is examined to see how it works in more

detail.

Figure 2: Decomposition

To decompose the problem of how to comb our

hair, we would need to consider the following

questions,

 Which comb to use?

 How long to comb for?

 How hard to press on our hair?

 What oil to use?

II. 4.2 PATTERN RECOGNITION

III.
When we decompose a complex problem, we often

find patterns among the smaller problems we

create. The patterns are similarities that some of the

problems share [6]. Pattern recognition involves

finding the similarities or patterns among small,

decomposed problems that can help us solve

more complex problems more efficiently.

Imagine that we want to draw a series of dogs. All

dogs share common characteristics. Among other

things they all have eyes, tail and nails. They also

like to eat meat and make barking sounds. As we

know that all dogs have eyes, tail and nails, we can

make a good attempt at drawing a dog, simply by

including these common characteristics.

In computational thinking, these characteristics are

known as patterns. Once we know how to describe

one dog we can describe others, simply by

following this pattern. The only things that are

different are the specifics:

 one dog may have green eyes, a

long tail and 20 nails

 another dog may have yellow eyes, a

short tail and 18 nails

 other dog may have brown eyes, a

medium tail and 21 nails

http://www.bbc.co.uk/education/guides/zxxbgk7/revision#glossary-zx9x6sg

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1763

Figure 3: Pattern Recognition

Finding patterns is extremely important. Patterns

make our task simpler. Problems are easier to solve

when they share patterns, because we can use the

same problem-solving solution wherever the

pattern exists. The more patterns we can find, the

easier and quicker our overall task of problem

solving will be. If we want to draw a number of

dogs, finding a pattern to describe dogs in general,

example: they all have eyes, tail and nails, makes

this task quicker and easier. We know that all dogs

follow this pattern, so we don‘t have to stop each

time we start to draw a new dog to work this out.

From the patterns we know dogs follow, we can

quickly draw several dogs. Suppose we hadn‘t

looked for patterns in dogs. Each time we wanted

to draw a dog, we would have to stop and work out

what a dog looked like. This would slow us down.

We could still draw our dogs - and they would look

like dogs - but each dog would take far longer to

draw. This would be very inefficient, and a poor

way to go about solving the dog-drawing task.

4.3 Abstraction

Abstraction allows us to create a general idea of

what the problem is and how to solve it. The

process instructs us to remove all specific detail

that will not help us solve our problem. This helps

us form our idea of the problem. This idea is

known as a ‗model‘. If we don‘t abstract we may

end up with the wrong solution to the problem we

are trying to solve [9]. With our dog example, if we

didn‘t abstract we might think that all dogs have

long tails and 20 nails. Having abstracted, we know

that although dogs have tail and nails, not all tails

are long and not all have 20 nails. In this case,

abstraction has helped us to form a clearer model

of a dog.

Figure 4: Abstraction

Abstraction is the gathering of the general

characteristics we need and the filtering out of the

details and characteristics that we do not need.

When baking a biscuit, there are some general

characteristics between biscuits. For example:

 a cake needs ingredients

 each ingredient needs a specified

quantity

 a cake needs timings

When abstracting, we remove specific details and

keep the general relevant patterns.

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1764

General Patterns Specific Details

We need to know that a biscuit

has ingredients to make

We don't need to know what

those ingredients are

We need to know that each

ingredient has a specified quantity

We don‘t need to know what

that quantity is

We need to know that each

biscuit needs a specified time to

bake

We don't need to know how

long the time is

Table 1: General Patterns and Specific Details

of Cake Baking

I. 4.4 Algorithm

An algorithm is a plan, a set of step-by-step

instructions to solve a problem. In an algorithm,

each instruction is identified and the order in which

they should be carried out is planned [10].

Algorithms are often used as a starting point for

creating a computer program, and they are

sometimes written as a flowchart or in pseudocode.

If we want to tell a computer to do something, we

have to write a computer program that will tell the

computer, step-by-step, exactly what we want it to

do and how we want it to do it. This step-by-step

program will need planning, and to do this we use

an algorithm. Computers are only as good as the

algorithms they are given. If you give a computer a

poor algorithm, you will get a poor result – hence

the phrase: ‗Garbage in, garbage out.‘ Algorithms

are used for many different things including

calculations, data processing and automation.

Figure 5: Algorithms

This order can be represented as an algorithm. An

algorithm must be clear. It must have a starting

point, a finishing point and a set of clear

instructions in between.

4.4.1 Representing an algorithm: Pseudocode

There are two main ways that algorithms can be

represented – pseudocode and flowcharts.

Most programs are developed using programming

languages. These languages have

specific syntax that must be used so that the

program will run properly. Pseudocode is not a

programming language, it is a simple way of

describing a set of instructions that does not have

to use specific syntax. Writing in pseudocode is

http://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-z8s2fg8
http://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-zqbjq6f
http://www.bbc.co.uk/education/guides/zpp49j6/revision#glossary-z8xr7ty
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-z8d3d2p
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-z8xr7ty
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zqbjq6f
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zbbnr82
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zrrf4wx
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zrrf4wx
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zrrf4wx
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zq6dtfr

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1765

similar to writing in a programming language.

Each step of the algorithm is written on a line of its

own in sequence. Usually, instructions are written

in uppercase, variables in lowercase and messages

in sentence case.

In pseudocode, INPUT asks a

question. OUTPUT prints a message on screen. A

simple program could be created to ask someone

their name and age, and to make a comment based

on these. This program represented in pseudocode

would look like this:

OUTPUT 'What is your name?'

INPUT user inputs their name

OUTPUT 'How old are you?'

INPUT user inputs their age

STORE the user's input in the age variable

IF age >= 18 THEN

 OUTPUT 'You are eligible to vote!'

ELSE

 OUTPUT 'You are not eligible to vote!'

4.4.2 Representing an algorithm: Flowcharts

A flowchart is a diagram that represents a set

of instructions. Flowcharts normally use standard

symbols to represent the different instructions.

There are few real rules about the level of detail

needed in a flowchart. Sometimes flowcharts are

broken down into many steps to provide a lot of

detail about exactly what is happening. Sometimes

they are simplified so that a number of steps occur

in just one step.

A simple program could be created to ask someone

their name and age, and to make a comment based

on these. This program represented as a flowchart

would look like this:

Figure 6: Flow chart for checking eligibility for voting

5. Evaluation of the Solution

Once a solution has been designed

using computational thinking, it is important to

make sure that the solution is fit for purpose.

Evaluation is the process that allows us to make

sure our solution does the job it has been designed

to do and to think about how it could be improved.

http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-z8s2fg8
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2#glossary-zmcs4wx
http://www.bbc.co.uk/education/guides/zpp49j6/revision/3#glossary-z8s2fg8
http://www.bbc.co.uk/education/guides/zpp49j6/revision/3#glossary-zbbnr82
http://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-zx9x6sg

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1766

Once written, an algorithm should be checked to

make sure it:

 is easily understood – is it

fully decomposed?

 is complete – does it solve every aspect

of the problem? is efficient – does it

solve the problem, making best use of the

available resources.

 meets any design criteria we have been

given

If an algorithm meets these four criteria it is likely

to work well. The algorithm can then be

programmed. Failure to evaluate can make it

difficult to write a program. Evaluation helps to

make sure that as few difficulties as possible are

faced when programming the solution. We may

find that solutions fail because:

 it is not fully understood - we may not

have properly decomposed the problem

 it is incomplete - some parts of the

problem may have been left out

accidentally

 it is inefficient – it may be too

complicated or too long

 it does not meet the original design

criteria – so it is not fit for purpose

There are several ways to evaluate solutions. To be

certain that the solution is correct, it is important to

ask:

 does the solution make sense?

Do you now fully understand how to solve the

problem? If you still don‘t clearly know how to do

something to solve our problem, go back and make

sure everything has been properly decomposed.

Once you know how to do everything, then our

problem is thoroughly decomposed.

 does the solution cover all parts of the

problem?

For example, if drawing a dog, does the solution

describe everything needed to draw a dog, not just

eyes, a tail and nails? If not, go back and keeping

adding steps to the solution until it is complete.

 does the solution ask for tasks to be

repeated?

If so, is there a way to reduce repetition? Go back

and remove unnecessary repetition until the

solution is efficient.

5.1 Dry run Technique

One of the best ways to test a solution is to perform

what‘s known as a ‗dry run‘. With pen and paper,

work through the algorithm and trace a path

through it. For example, in Algorithms, a

simple algorithm was created to ask someone their

name and age, and to make a comment based on

these. You could try out this algorithm – give it a

dry run. Try two ages, 15 and 25. When using age

15, where does the algorithm go? Does it give the

right output? If you use age 25, does it take you

down a different path? Does it still give the correct

output? If the dry run doesn‘t give the right answer,

there is something wrong that needs fixing.

Recording the path through the algorithm will help

show where the error occurs. Dry runs are also

used with completed programs. Programmers use

dry runs to help find errors in their program code.

http://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-z8d3d2p
http://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-zp8thyc
http://www.bbc.co.uk/education/guides/zssk87h/revision#glossary-zt8thyc
http://www.bbc.co.uk/education/guides/zssk87h/revision/2#glossary-zp8thyc
http://www.bbc.co.uk/education/guides/zssk87h/revision/7#glossary-zp8thyc
http://www.bbc.co.uk/education/guides/zpp49j6/revision/2
http://www.bbc.co.uk/education/guides/zssk87h/revision/7#glossary-z8d3d2p

http://www.ijcsjournal.com Volume 5, Issue 1, No 24, 2017 ISSN: 2348-6600

Reference ID: IJCS-272 PAGE NO: 1758-1767

Alagappa University, Karaikudi, India 15
th
 -16

th
 February 2017

IT Skills Show & International Conference on Advancements in Computing Resources (SSICACR-2017)

http://aisdau.in/ssicacr ssicacr2017@gmail.com

All Rights Reserved ©2017 International Journal of Computer Science (IJCS Journal) and

Alagappa Institute of Skill Development & Computer Centre, Alagappa University, Karaikudi, Tamil Nadu,

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 1767

6. Conclusion

Computational thinking is a fundamental skill for

everyone, not only for computer scientists. We

should add computational thinking to every child‘s

analytical ability. This paper have described the

four key aspects of computational thinking that

includes decomposition, pattern recognition,

abstraction and algorithms in detail along with

appropriate examples. It also justified why

algorithms created through computational thinking

need to be evaluated. It described the dry run

technique which is used to evaluate solutions

before programming. Computational thinking term

has been much discussed amongst educationalists

all over the world to grips with a new computing

curriculum designed to equip students with such

skills, and to reduce the skills gap between

education and the workplace. It is essential to keep

computational thinking as the technique to be

taught in the school level which will act like the

brain boosters which improves the analytical

ability of the kids.

References

[1] Jeffy Krameris, " Abstraction The Key To

Computing?", Communications of the ACM, April

2007/Vol. 50, No. 4.

[2] Alan Bundy, " Computational Thinking Is

Pervasive", Journal Of Scientific and Practical

Computing, Vol. 1, No. 2 (2007) 67–69.

[3] Vincent Conitzer, "Making Decisions Based on

the Preferences of Multiple Agents",

communications of the ACM, march 2010, vol.

53, no. 3. doi:10.1145/1666420.1666442.

[4] James J. Lu, George H. L. Fletcher, " Thinking

About Computational Thinking", SIGCSE‘09,

March 3–7, 2009, Chattanooga, Tennessee, USA.

Copyright 2009 ACM 978-1-60558-183-5/09/03.

[5] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs, 2nd ed. MIT

Press, Cambridge, 1996.

[6] J. L. Bates and R. L. Constable. Proofs as

programs. ACM Trans. Program. Lang. Syst.

7(1):113-136, 1985.

[7] L. Carter. Why students with an apparent

aptitude for computer science don‘t choose to

major in computer science. SIGCSE 2006,

Houston, pp. 27-31.

 [8] A. Cohen and B. Haberman. Computer

science: a language of technology. SIGCSE inroads

39(4):65-69, 2007.

[9] M. Guzdial. Paving the way for computational

thinking. CACM 51(8):25-27, 2008. [8] S. Reges.

The mystery of ―b := (b = false).‖ SIGCSE 2008,

Portland, pp. 21-25.

[10] J. M. Wing. Computational thinking. CACM

49(3):33-35, 2006.

