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Abstract— A set of extensive experiments carried out under 

both daytime and nighttime real traffic conditions. The data were 

captured using an enhanced or extended Floating Car Data 

system that includes a stereo vision sensor for detecting the local 

traffic ahead. The collected information is then used to propose a 

novel approach to the level-of-service (LOS) calculation. This 

calculation uses information from both the xFCD and the 

magnetic loops deployed in the infrastructure to construct a 

speed/occupancy hybrid plane that characterizes the traffic state 

of a continuous route. In the xFCD system, the deduction 

component implies the use of previously developed monocular 

approaches in combination with new stereo vision algorithms 

that add robustness to the detection and increase the accuracy of 

the measurements corresponding to relative distance and speed. 

In addition to the stereo pair of cameras, the vehicle is equipped 

with a low-cost Global Positioning System (GPS) and an 

electronic device for controller-area-network bus interfacing. 

The xFCD system has been tested in a 190-min sequence 

recorded in real traffic scenarios under different weather and 

illumination conditions. The results are promising and 

demonstrate that the xFCD system is ready for being used as a 

source of traffic status information. As an indicative example of 

the developed xFCD system, we construct a novel route LOS 

calculation that combines hybrid information about speed and 

occupancy from both the xFCD system and the magnetic loops in 
the infrastructure. 

Index Terms—Controller area network(CAN)bus,extended 

floating car data(FCD),Global Positioning System (GPS), level of 
service, stereo vision. 

I. INTRODUCTION  

The promotion of intelligent transportation systems is one of the 
key instruments to achieve this goal. In particular, accurate traffic 
monitoring plays a significant role in the construction of novel 
solutions for traffic management to reduce the levels of congestion 
and consequently, consumption and emissions. This is called floating 
car data (FCD) refer to technology that collects traffic state 

information from a set of individual vehicles that float in the current 
traffic. Each vehicle can be seen as a moving sensor operating in a 

distributed network. It is equipped with global positioning and 
communication systems, transmitting its global location, speed and 
direction to a central control unit that integrates the information 
provided by each one of the vehicles. FCD systems are being 

increasingly used in a variety of important applications since they 
overcome the limitations of fixed traffic monitoring technologies [2]. 
If this system achieves a sufficient penetration rate [3]. 

  
The basic data provided by FCD systems can be extended (xFCD) 

using new specific devices and sensors endowed in modern vehicles  
5], [6]. Such data can be exploited to extend the information horizon 
including traffic, weather, road management, and safety applications 
[4]. A second generation of xFCD has been recently proposed by 

including vision-based sensors to estimate the local traffic conditions. 
For example, in [7], a stereo vision-based detection module is used as 
a vehicle ahead checker (excluding lateral road lanes) to confirm or 
cancel the traffic alarms generated by the traffic level analyzer. In 
addition, they detect temporary danger warning signs. There are 
many cases where the use of vision may provide more accurate speed 
measurements, compared with standard FCD systems. Consider the 
case of congested traffic, where the host vehicle is stopped, whereas 

the vehicles located on the left or right lanes are moving at speeds 
greater than 0 km/h (i.e., the traffic jam only affects to the host lane). 
In addition, if FCD systems are installed onboard a fleet of public 
transport vehicles such as buses, they can provide misleading speed 
measurements due to the use of dedicated bus lanes. (Adjacent lanes 
may be jammed, whereas the bus lane is free.) Based on our previous 
works related with vision-based vehicle detection in the context of 
intelligent vehicles applications  [10]–[12], we have proposed to use 

the information provided by the cameras to supply xFCD systems 
with a more representative measurement of the traffic conditions 
[13], [14]. A set of monocular vision-based modules (forward-rear 

and side looking) was used, obtaining a nearly 360◦ field of view. 

Instead of excluding lateral lanes [7], the relative distance and speeds 
of the vehicles detected in adjacent lanes were incorporated to the 
xFCD structure, providing variables such as the local traffic load 
(number of vehicles, road capacity, etc.) and the average road speed 
(not only the floating vehicle speed) of the specific local area. Thus, a 
more detailed description (less discredited) of the traffic status can be 
obtained. These xFCD systems allow for extended capabilities in 
traffic management that can solve some current problems. Among  
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others, we will use the xFCD to improve the determination of levels 
of service (LOSs). LOS qualitatively describes the operating 
conditions of a roadway based on a set of factors that consider 

physical variables such as speed or travel time, together with others 
such as maneuverability or safety [8]. Up to six LOSs (A to F) are 
defined, where the higher LOS (A to C) describe different levels of 
free flow, LOS D describes a situation that is approaching unstable 
flow, LOS E describes unstable flow, and LOS F describes forced or 
breakdown flow. There is no common or standardized method for 
calculating the LOS in a specific road. Some can be found in [8] or 
[9], where the calculations are mainly based on a combination of 

speed and occupancy (defined as the number of vehicles per 
kilometer and lane in the road). The actual implementation of these 
calculations relies on collected data from fixed magnetic loops. 
Consequently, the calculations can only be performed in a discrete 
number of points in the road, with no information in between. In 
addition, magnetic loop performance significantly drops in congested 
scenarios, where it is difficult to discriminate between consecutive 
vehicles. In this paper, we describe an improved approach of the 

vision-based vehicle detection systems described in [13] and [14] by 
means of the use of stereo vision. Stereo information improves both 
the detection performance and the accuracy of the measurements 
(host-to-vehicle (H2V) relative distance and speed). Previous results 
[14] were obtained in sequences of a few seconds (800 frames). Here, 
we provide extensive results in sequences of a total duration of 198 
min (428 400 frames, with 36 frame/s) recorded in real traffic 
scenarios under different weather (rainy/cloudy) and lighting 

conditions (nighttime/daytime) and different levels of congestion. 
These improved data are then used to propose a novel method for 
calculating LOS based on information from both the vehicle and the 
magnetic loops. This LOS calculation is more precise and can be 
applied to a whole route, instead of discrete points in the road. The 
remainder of this paper is organized as follows: Section II describes a 
global overview of the system. The description of the stereo vision-
based vehicle detection system is provided in Section III. Section IV 
describes the experimental results, including sensor accuracy 

analysis. These results are applied to the calculation of route LOS in 
Section V. Finally, conclusions and future works are discussed in 
Section VI.  
 

 
 

 

 
Fig. 1. (Top left) Low-cost stereo vision sensor. (Top right) RTK-
DGPS. (Bottom) Experimental vehicle (modified Citröen C4). 

 
EXISTING SYSTEM 

II. SYSTEM OVERVIEW 
 

The experimental vehicle used in this work is a carlike robot (a 
modified Citröen C4), which can be seen in Fig. 1. It has an onboard 
computer housing the image processing system, i.e., an RTK-DGPS, 
which is connected via an RS232 serial port; a pair of synchronized 
(hardware triggering) low-cost digital cameras connected via 
FireWire ports; a specific electronic device for controller area 
network (CAN) bus interfacing; and a cellular communication 
system. The differential Global Positioning System (DGPS) is a 5-Hz 

RTK Maxor-GGDT system of Javad Navigation Systems. Based on 
our previous work [18], this system provides accurate global 
positioning with maximum deviations in x- and y-axes of 5 and 5.6 
mm, respectively. (The standard deviations in the x- and y-axes were 
0.0036 and 0.0041 mm, respectively.) The stereo vision sensor uses 

320 × 240 pixel gray-scale images with a baseline of approximately 

300 mm and a focal length of 8 mm. The global architecture of the 
system can be seen in Fig. 2. The results obtained by the stereo vision 
module are combined with the DGPS measurements and the data 

provided by the CAN bus to have globally referenced traffic status 
information. The measurements provided by the DGPS are linearly 
interpolated due to its low sample frequency (5 Hz).  
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III. VISION-BASED VEHICLE DETECTION 

 

A. System Description 
The global scheme of the proposed vision-based vehicle detection 
system is shown in Fig. 3. The first step consists of reducing the 

searching space in the image plane by detecting the road lane 
markings. The detected lanes are used as the guidelines that drive the 
vehicle-searching process. Lane markings are detected using gradient 
information in combination with a local thresholding method, which 
is adapted to the width of the projected lane markings. Then, clothoid 
curves are fitted to the detected markings [14]. In case no lane 
markings are detected, the system automatically defines a fixed 
region, which corresponds to a straight road. Then, several region of 

interest (ROI) generation modules are triggered in parallel. 
Monocular ROIs are selected by combining white top-hat and canny 
features with different types of symmetries (gray-level, vertical-edge, 
and horizontal-edge symmetries), as described in [14]. Stereo 
processing results in a dense disparity map, which allows the 3-D 
position and the relative speed of the vehicles ahead to be accurately 
estimated. The camera pitch angle is dynamically estimated by means 
of the so-called virtual disparity map, from which regions 
corresponding to the ground plane can easily be removed [15]. One 

thus obtains a more precise specification of the areas of the ground 
where vehicles are to be expected (see Fig. 4). Stereo ROIs are then 

computed by counting the number of depth features 

corresponding to the filtered dense disparity map of locations 

selected by means of perspective constraints (flat-world 

assumption) and prior knowledge of target objects (with 

tolerances). In particular, the locations where the number of 

depth features exceeds a certain fraction of the window area are 
passed on to subsequent 
 

 
 
Fig. 4. (Left to right) Original image, dense disparity map, and 
filtered map (without ground-plane points or points that are very 
high). 
 

 
 

Fig. 5. (Left to right) Original image, individual clusters after 
adaptive thresholding, and selected ROIs. 
 

 
Fig. 6. (Upper rows) Daytime positive and negative samples. (Lower 
rows) Nighttime positive and negative samples. Note that the 

intensity of nighttime images has been synthetically increased. 
modules, thus ensuring that each candidate region corresponds to a 
real 3-D object. 
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Nighttime ROI selection mechanism is first based on adaptive 
thresholding. Candidates are then obtained by searching pair of 
clusters (which are usually rear lights) with similar vertical location, 

using again the flat-world assumption, perspective constraints, and 
prior knowledge of target objects. Although this is a simple method, 
it is very effective in practice. It provides a low number of false 
positives since the adaptive thresholding mostly highlights the rear 
lights of the vehicles (see Fig. 5). The three ROI selection modules 
provide different candidates, some of which overlapped, as they can 
refer to the same vehicle. All these candidates are classified by means 
of linear Support vector machine classifiers [16] 

 

 

 
 
Fig. 7. Scheme of the manual driving experiment. 

 

 
Fig. 8. Stereo and DGPS H2V relative distance including absolute 
and depth estimation errors in the experiment in which the car is 
overtaken. 

 
in combination with histogram of oriented gradients (HOG) features 
[17]. Two specialized classifiers have been trained, depending on the 

lighting conditions. Candidates selected by monocular and stereo 
modules are classified using a daytime SVM classifier. On the other 
hand, a nighttime SVM classifier is used for nighttime ROIs (see Fig. 
3). Fig. 6 shows some of the positive and negative samples used for 
training. The number of samples used for developing the training test 
differs depending on the classifier. Daytime classifier was trained 
with 19 031 negative and 9248 positive samples. Nighttime classifier 
was obtained using 2486 negative and 1847 positive samples. The 
number of samples used in nighttime scenarios is lower because intra 

class variability is much lower than that under daytime conditions. 

The use of three different ROI selection methods triggered at the 
same time (one of them specifically designed for nighttime 
conditions) avoids the need for different parameter settings, 

depending on the lighting/weather conditions. However, the three 
detection modules may generate candidates related with the same 
vehicle. Accordingly, a kind of non maximum suppression technique 
is used to group multiple overlapped candidates, trying to generate 
only one candidate per vehicle. In practice, we have observed that 
good candidates (candidates that are well fitted to the actual vehicle 
contour) usually provide SVM results farther to the hyperplane that 
separates the vehicle and nonvehicle classes, i.e., their classification 

result has higher confidence. Thus, we use the distance to the 
hyperplane as the main variable to select the best candidate of a set of 
overlapped candidates. (Overlapping has to be larger than 70% of the 
area of the smaller candidate.) Finally, the vehicles detected in this 
single-frame way are passed to the multiframe validation and 
tracking module (see Fig. 3). A predefined number (empirically set to 
3) of consecutive identifications of an object classified as a vehicle 
triggers the data association and tracking stages. The data association 

problem is addressed by using feature-matching techniques. Harris 
features are detected and matched between two consecutive frames, 
as in [14]. Tracking is implemented using a Kalman filter with a 
constant velocity model [14]. 
 

B. System Validation 

 
In a first experiment, we evaluated the different parameters provided 
by the vision sensor, i.e., H2V relative distance and speed, together 
with their corresponding errors. A set of sequences was recorded, in 
which a driver was requested to perform an overtaking maneuver in a 
two-lane road at approximately 25 km/h. A vehicle was parked in the 

righthand (nonovertaking) lane, so that the host vehicle overtakes 
these vehicles at a relative speed of about 25 km/h. In addition to the 
stereo vision sensor, two DGPSs are used, with one placed at the lead 
vehicle’s position and the other on board the host vehicle (see Fig. 7). 
The measurements supplied by these DGPSs (after linear 
interpolation due to their low sampling frequency, i.e., 5 Hz) are 
taken to be the ground truth. Fig. 8 plots the stereo and the DGPS 
distance estimates, including the absolute error and the stereo depth 

estimation uncertainties [18], of the experiment in which the car is 
the vehicle overtaken. The DGPS H2V, which is taken to be the 
ground truth, lies mostly within the limits of the stereo depth estimate 
including their corresponding uncertainties. As can be observed, the 

greater the depth, the greater the absolute error. Depth estimates 

may not be reliable at long distances (absolute errors). 

However, the absolute error decreases as the H2V distance 

decreases.  

 
Although the depth estimation errors are sufficiently small for the 
precision required in the present application, those of the discrete 
estimate of the relative speed from the Kalman state variable are not. 
As demonstrated in [19], discrete difference between two noisy depth 
estimation values introduces a considerable error in the relative speed 
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computation for noninfinitesimal Δt, and this clearly limits the vision 

system’s precision. Those authors propose an optimal value for Δt, 

which is directly proportional to depth. In the present case, we  define 

a practical value of Δt = 1 s and compute the average speed of the 

last 36 frames. This approach is very effective in practice. 
 

 
 
Fig. 9. H2V relative speed (in kilometers per hour) taken from the 
CAN bus (the leading vehicle is parked) and from the DGPS depth 
values and the discrete stereo measurements, estimated by averaging 
the discrete stereo values at each second, in the experiment where the 
car is overtaken.  
 
 It shows the relative speed obtained from the CAN bus (recall that 

the leading vehicle is parked in this experiment), which was 
computed by means of DGPS H2V distance values, the discrete 
relative speed provided by the Kalman filter, and the relative speed 
computed at each second. One observes that the discrete values of the 
stereo relative speed are not at all useful. However, the proposed 
approach previously described provides relative speed estimates that 
are accurate enough for the application’s requirements—the root-
mean-squared error is around 3 km/h. C. Single-Frame SVM 
Classifier Results As described in Section III-A, the generic 

candidates are classified by means of two different linear SVM 
classifiers (daytime and nighttime). To define the SVM decision 
thresholds, we use the ROC curves defining the work points in terms 
of the relationship between the detection rate (DR) and the false 
positive rate (FPR). In these experiments, two thirds of the samples 
were used for training, and one third was used for test. The ROC 
curves are shown in Fig. 10. On the one hand, the decision threshold 
for the daytime classifier is fixed to 0.03 with a DR of 96.1% and an 

FPR of 6.4%. On the other hand, the decision threshold for the 
nighttime classifier is fixed to 0.07 with a DR of 91.4% and an FPR 
of 7.8%. We have to consider that these results are single-frame 
results, so they will be improved in multiframe validation and 
tracking stages. Thefinal classifier is trained with all the available 
samples 

Fig. 10. ROC curves for both daytime and nighttime linear SVM 
classifiers.  (image taken from Google Maps). 

 

Disadvantages: 
 

1. It provides less information and measurement about the 

traffic condition. 

2. It provides either front / rear view. 

3. It needs additional devices to improves the determination of 

LOS. Detection performance and accuracy of the 

measurement is not considerable 

 
 

PROPOSED SYSTEM 

 

IV. EXTENDED FLOATING CAR DATA 

EXPERIMENTAL RESULTS 
 

A. Description of the Experiment 
 

The proposed system was tested on data from real traffic conditions. 
A set of video sequences was recorded on a route through the Madrid 
(Spain) M-30 highway (see Fig. 11). The route distance is 
approximately 15 km and was driven up to eight times: four times 
going South (from A to B), where we found free traffic, and four 
times going North (from B to A),  where we found a congestion that 

started to decrease during the last minutes of the experiment. The 
video sequences were recorded from 7:20 A.M. to 10:38 A.M., 
including different lighting (nighttime/daytime) and weather 
(rainy/cloudy) conditions, as well as different levels of congestion. 
Consequently, we produced a video database including 195 min. 
(Although the experiment had a total duration of 198 min, 3 min was 
lost due to a problem in the recording system.)  
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Fig. 11. Vision-based vehicle detection results under daytime, cloudy, 
and rainy conditions with different levels of traffic congestion, 
corresponding to 13 min 
 

B. Measured Variables 

 
The main variables provided by the xFCD system are given here. 1) 
Average road speed: This is computed by means of the host speed 
(via CAN bus) and the relative speed of the vehicles ahead (vision 
based). 2) Number of vehicles: This variable provides the number of 
vehicles detected ahead (left, middle, and right lanes). 3) Relative 

H2V distance: This is the relative distance between the host vehicle 
and the vehicle ahead (located on the same lane). Many other 
variables are obtained by the xFCD system. Some of them are 
directly available via CAN bus, and other variables are indirectly 
available after some processing. Among all of them, we remark the 
following: speed, acceleration, revolutions per minute, number of 
stop-and-go (based on the speed), outside temperature and humidity, 
windshield wiper status, different light status (fog, emergency, high 
beams, indicators, etc.), number of gear changes, number of lane 

changes (based on the indicator lights), fuel consumption, etc. 

 

C. Vision-Based Vehicle Detection Results 

 
Global results are presented in Table I. We have labeled the total 

amount of vehicles in range in all the sequences (ground truth). Note 
that we distinguish between true positives and vehicles that are 
detected from a previously detected vehicle (identifier exchanged). In 
both cases, we consider the vehicle as detected, assuming that some 
errors will appear in the relative distance computation when a new 
vehicle is associated with a previously tracked vehicle. Accordingly, 
we obtain DRs of 88.44% and 90.99% under nighttime and daytime 
conditions, respectively. 0.84 false- positive/min are obtained under 

nighttime conditions, whereas 0.69 false-positive/min are detected 
under daytime conditions. In addition, 6.67% and 5.82% of the 
vehicles are counted more than one time under nighttime and daytime 
conditions, respectively (i.e., a new identifier is generated). 
Nighttime detection performance is lower than daytime performance 
due to two main reasons: First, the nighttime ROI selection scheme is 
not stereo based, which is prone to generate more false positives. 
Second, in the sequences used in the experiments, most of the rain 

fell under nighttime conditions. Although rain does not seem to have 
any effect on detection performance under daytime conditions (due to 
the stereo-based approach), some false positives and false negatives 

under nighttime conditions are generated due to the effect of rear 
light reflections through the water drops. Figs. 11 show some of the 
variables provided by the system in two of the sequences (daytime 
and nighttime, respectively) with different levels of traffic 
congestion. The following variables are drawn: host speed (via CAN 
bus interface), the average road speed, the distance between the host 
vehicle and the vehicle ahead, and the number of vehicles detected 
per frame. The maximum number of vehicles detected per frame is 6. 

(Note that the minimum number is 1 since we always count the host 
vehicle.) The number of detected vehicles does not seem to affect 
average road speed computation, which implies that the relative 
distances of the vehicles detected in adjacent lanes and the proposed 
method for computing the relative speed are coherent up to a point. 
(Extensive ground truth data will be  
 
 

 
Fig. 13. Vision-based vehicle detection results under nighttime, 
cloudy, and rainy conditions with different levels of traffic 
congestion, corresponding to 7 min of a sequence. needed to assure 
the actual goodness of the relative distance and speed measures.) The 
average difference between the host 

speed and the average road speed is 0.4 km/h. This can be explained 
by the fact that the host vehicle is driving on the central lane of a 
three-lane highway most of the time, and  therefore, the higher speed 
of the vehicles located on the left lane is somehow compensated with 
the lower speed of vehicles located on the right lane. 
 
 

IV. ROUTE LINE OF SIGHT THROUGH HYBRID FIXED 

AND EXTENDED FLOATING DATA 

 
As we described in Section I, LOS qualitatively describes the 
conditions of the road. LOSs are often calculated using a combination 
of speed and occupancy. These two variables are collected by the 
fixed magnetic loops deployed underneath the road. At each point of 

measurement, two magnetic loops are installed. Speed is directly 
calculated from the travel time between the pair of loops (knowing 
their fixed separation). On the other hand, occupancy is obtained 
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through the total time that a loop is active, i.e., the percentage of time 
in a minute that the loop detects a vehicle above it; thus, the 
occupancy indicates some kind of density of vehicles in a segment of 

the road. This monitoring method implies two important issues: First, 
in congested scenarios, speed detection is unreliable, because the 
magnetic loops are unable to discriminate between two consecutive 
vehicles that travel through the pair of loops at each point of 
measurement. Second, even in free-flow traffic scenarios, data are 
only collected at discrete points in the road; thus, no continuous route 
information can be supplied. The xFCD system proposed and 
described can be used to mitigate these issues, providing both better 

speed description and a hybrid route LOS. We define the route LOS 
as the set of sequential LOS calculations that are performed from the 
speed and occupancy data collected by the xFCD system at an 
increased spatial resolution. We will now proceed to show the 
collected data from the magnetic loops and the host vehicle during 
the same day and time of the experiment. We will show the 
comparison between two significant variables for the LOS 
calculation, i.e., speed and occupancy, and we will propose a new 

method for determining the LOS using hybrid data from both the 
magnetic loops and the xFCD. 
 

A. Comparison Between Fixed Loops and xFCD 
 

The xFCD system collects the value of the whole set of parameters 
described in Section IV-B and its GPS position every minute. To 
implement a fair comparison with the measurements produced by the 
fixed loops, we select the one that is closest to the position of the 
floating vehicle in each measure point and time. This is an approach 

used for interpolating the values collected by fixed loops along the 
space between them [20]. 
 

1) Speed: Fig. 14 shows that, in general, the fixed loops record 
higher speed values. These differences are reduced in higher speed 
values. It is also remarkable that fixed loops do not register almost 
any speed value below 10 km/h, which is not consistent with the 
observation of heavy congested traffic in the South-to-North routes. 

Table II shows the mean speed values recorded by both the vehicle 
Vv and the fixed loops Vl in the North-to-South and South-to-North 
routes (averages over 39 and 124 measurements, respectively). 
Observe that the highest difference between the speed recorded by 
the vehicle and the fixed loops happens in the South-to-North route, 
where there is a much higher congestion. 

 

2) Occupancy: The second variable that is used in the LOS 
determination is the occupancy. The xFCD do not include direct 
calculation of this variable. Instead, we can approach it through 
the number of vehicles that the host vehicle has counted through 
the following equation: 

ˆO(t) = Nv(t) d(t)・3 Omax× 100 (1) 

 

 

 
Fig. 14. Speed collected by the (red) vehicle and (blue) fixed loops. 
where Nv(t) is the number of counted vehicles in any of the three 
lanes of the roadway, d(t) is the host vehicle traveled distance 
(depending on its speed), and Omax = 1000/6 is the  maximum 

capacity of the roadway, i.e., the maximum number of vehicles per 
kilometer. (We have considered a mean value of 6 m for the length of 
the vehicle plus the distance between vehicles in a heavily congested 
scenario.) Fig. 15 shows the occupancy values obtained from both (1) 
and the fixed loops. To implement a fair comparison between those 
pairs of values, we take the occupancy measurement of the magnetic 
loop that is closer to the point and time of measure of the host 
vehicle. From Fig. 15, we can observe that 1) in general, the 

estimated occupancy values calculated through (1) are significantly 

lower and 2) nevertheless, this estimation ˆO(t) is capable of 

reproducing the tendency of the actual occupancy measured by the 

magnetic loops, except in the presence of low speed, where ˆO(t) 

overestimates the actual occupancy. Consequently, the proposed 

estimation of the roadway occupancy is a feasible approach to the 
actual occupancy, but the values of this variable that are provided by 
the magnetic loops are more reliable. 

 

B. Route Hybrid LOS 

 
LOS determines the effectiveness of sections in a road infrastructure. 
In consequence, LOS is extensively used in the analysis of traffic 
conditions, describing the road’s safety and driving comfort based on 
speed and occupancy. To consider speed and occupancy in the 
calculation of LOS, a speed/occupancy (S/O) plane is used. In this 
type of graph, the top-left corner (high speed, low occupancy) 
determines freeflow traffic states, whereas the lower-right corner 

(low speed, high occupancy) represents congestion. The LOS will 
then decay from A to F, following the diagonal between these two 
corners. Fig. 16 show the S/O planes generated by the values of speed 
and occupancy obtained from the magnetic loops and the xFCD. 
From the observations of Figs. 14–16, we conclude that the magnetic 
loops and the xFCD provide better measurements of occupancy and 
speed, respectively. In consequence, the calculation of LOS could be 
improved by considering hybrid values of these two variables 
obtained from the host vehicle and the fixed loops. Following this 
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approach, we can build an S/O plane considering the speed values 
recorded by the host vehicle and the occupancy measurements 
performed by the magnetic loops. The resultant S/O plane can be 

observed in Fig. 17. Note that this S/O hybrid plane is a route S/O 
plane because it takes the xFCD of a vehicle traveling through a route 
and the measurements of the corresponding magnetic loops in space 
and time. This is a novel approach to LOS calculation based on 
mobile and fixed sensor fusion. It provides continuous information 
regarding the state of the roadway instead of the discrete values of 
LOS that are obtained from the fixed loops. Using this route S/O 
hybrid plane, the final determination of the LOS would be 

implemented through the definition of specific thresholds of speed 
and occupancy that would delimit different regions in the plane. In 
addition to using more accurate measurements of speed and 
occupancy and extending the LOS determination to a continuous 
route, this approach provides significant information to both the 
traffic control center and the driver. In fact, this route hybrid LOS 
could become a means to promote the interchange of data between 
the users and the infrastructure as both benefits from it. The traffic 

control center would be provided with more detailed data coming 
from different host vehicles to improve the determination of the 
traffic state and the consequent decisions to be taken. The driver 
would receive information regarding the state of the roadway in 
future points of his route with which he could estimate travel times or 
modify his path to avoid congestions. 
 

VI. CONCLUSION AND FUTURE WORKS 

 
This paper has proposed a novel xFCD system and the experimental 
results generated in an actual scenario with real traffic data and under 
different light and weather conditions. The huge amount of collected 

information provided by this xFCD system can be used in a great 
variety of applications. Among them, we have proposed a novel way 
of calculating the LOS of a roadway through hybrid information 
regarding speed and occupancy collected from both fixed magnetic 
loops and a host vehicle providing xFCD.  
 
 
 

 
 

Fig. 15. Occupancy calculated from the number of vehicles (red) 
counted by the host vehicle and (blue) measured by the magnetic 
loops. 

 
Fig. 16. S/O plane. (Red) xFCD pairs and (blue) magnetic 

loop pairs. 

 
Fig. 17. Route S/O hybrid plane considering the speed values 

from the xFCD and the occupancy measurements from the 

magnetic loops. We have first presented the results of an 

xFCD system equipped with a stereo vision-based local traffic 

detector in a set of extensive experiments carried out under 

real traffic conditions with different lighting and weather 

conditions, as well as different levels of traffic congestion. 

The vision based vehicle detection system combines different 
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approaches (monocular, stereo, and nighttime) to supply generic 
obstacles that are classified by means of two linear SVM classifiers 
(daytime/nighttime) and HOG features. The detected vehicles are 

then validated in a multiframe fashion and tracked using a Kalman 
filter. The proposed approach provides data from not only the host 
vehicle but from the vehicles located in the field of view of the host 
as well, including the vehicle ahead and the vehicles located in 
adjacent lanes (when available). Thus, standard variables such as the 
host vehicle speed (via CAN bus) can be enriched and supported with 
new variables such as the distance to the vehicle ahead, the average 
road speed, and the number of vehicles in range. Although the use of 

stereo vision implies managing some errors when estimating the 
relative distance (errors that are squared proportional to the depth), it 
allows us to have an accurate estimation of the relative speed by 
integrating relative distance values during 1 s. The global results 
show that the proposed approach produces good results under 
different traffic conditions, succeeding when detecting traffic 
congestion. The collected variables were then used to improve the 
calculation of LOS in the roadway, together with the measurements 

provided by the magnetic loops deployed in the infrastructure. We 
built S/O planes based on pairs formed by speed values collected in 
the host vehicle and occupancy measurements recorded by the 
magnetic loops, with each one supplying the most accurate 
information of each separate variable. In addition, this novel 
calculation of LOS provides not only discrete values of LOS in space 
but a route LOS as well, where the state of the traffic is monitored in 
a continuous way. Although the results are promising and practicably 

applicable now, future work is still needed in both the detection 
system and the LOS calculation. On the one hand, new advances 
have to be developed to improve the DR and reduce the number of 
false positives in the xFCD system. A more sophisticated ensemble 
classifier will be introduced using different classifiers, depending on 
the lane, and including a new class for trucks since they are the main 
source of error in vehicle counting. The DR and the accuracy of the 
H2V relative distance measurements can be improved by combining 
the proposed vision based approach with range-based sensors, such as 

radar or laser, or series-production sensors of modern vehicles 
endowed with ADASs. On the other hand, novel approaches to the 
estimation of occupancy are needed to better exploit the information 
generated by the xFCD. In addition, we need to define the set of 
thresholds to determine LOS through the route S/O hybrid plane. 
With all this available hybrid information from both the xFCD and 
the magnetic loops in the infrastructure, we will be able to build 

novel algorithms to estimate traffic variables such as travel 

time between two points in a route and assess applications in 

the context of traffic management and control. 
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