

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 278

Published by SK Research Group of Companies (SKRGC).

 Privacy Preserving Cost Reducing Heuristic

Approach For Intermediate Datasets In Cloud
M.Savitha

PG Student

Department of CSE

Bharathiyar Institute of Engineering For Women,

Attur, Tamil Nadu, India.

savicse25@gmail.com

Abstract— Cloud computing provides massive

computation power and storage capacity which enable users

to deploy computation and data intensive applications without

infrastructure investment. Along the processing of such

applications, a large volume of intermediate datasets will be

generated and often stored them to save the cost of

recomputing them. In this paper, toward achieving the

minimum cost benchmark and for cost effectively storing

large volume of generated application datasets in the cloud,

we propose a novel highly cost effective and practical storage

strategy that can automatically decide whether a generated

dataset should be stored or not at runtime in the cloud and

from that stored dataset, inorder to provide security to the

sensitive dataset, we propose a novel upper bound privacy

leakage constraint-based approach to identify which

intermediate data sets need to be encrypted and which do not,

so that privacy-preserving cost can be saved and also the

privacy requirements of data holders can be satisfied.

Key words—Datasets storage, computation, cloud

computing, data storage privacy, privacy preserving,

intermediate dataset, privacy upper bound.

I.INTRODUCTION

Cloud computing is regarded as an ingenious

combination of serious of technologies, establishing a novel

model by offering several services and using economies of

scale [1], [2].Participants in the business chain of cloud
computing can benefit from this model and cloud users can

save huge capital investment of infrastructure and concentrate

on their own core business [3].Many companies and

organizations have been migrating or building their business

into cloud environment. So in this, during the execution of

scientific applications a huge amount datasets will be
generated. These generated datasets contain important

intermediate or final results of the computation and need to be

stored as valuable resources. This is because of two reasons.

First the data can be reused i.e., scientists may need to re-

analyze the results or apply new analyzes on the existing

datasets [5] .Second the data can be shared i.e., for

collaboration the computation results are shared and hence the

datasets are used by scientists from different institutions [6].

Storing valuable datasets can save their regeneration cost

when they are reused. However the big challenge is its huge

size .Due to this the large amount of storage space and costs
are required, along with this the major problem is the privacy

of the dataset holders that is affected due to this storage of

intermediate datasets in cloud because that can be accessed

and processed by multiple parties. Cloud computing adopts

the pay-as-you-go model, where users are charged according

to the usage of cloud services such as computing, storage and

network services [7].

With the pay-as-you-go model, the total application

cost in the cloud highly depends on the strategy of storing the

application datasets, e.g., storing all the generated application

datasets in the cloud may result in a high storage cost, because

some datasets may be rarely used but large in size and also
deleting all the generated datasets and regenerating them every

time when needed may result in a high computation cost. And

another major problem due to this storage is security and

privacy of dataset and dataset holders respectively [4], [5].

The privacy concerns caused by retaining intermediate

datasets in cloud are important. The storage of intermediate

datasets enlarges attack surfaces so that privacy requirements

data holders are at risk of being violated. Usually intermediate

datasets in cloud are accessed and processed by multiple

parties, but rarely controlled by original dataset holders. This

enables an adversary to collect intermediate datasets together

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 279

Published by SK Research Group of Companies (SKRGC).

and menace privacy-sensitive information from them and

bringing considerable economic loss or severe social

reputation impairment to data owners.

II. EXISTING SYSTEM

A.APPLICATION DATA AND DDG

There are two types of data stored in the cloud:

1. Original data: These are the data uploaded by users,

for example, they are usually the raw data. For these

data, users need to decide whether they should be

stored or deleted because they cannot be regenerated
by the system once deleted.

2.

3. General data: These are the data newly produced in

the cloud while the applications run. They are the

intermediate or final computation results of the

applications, which can be reduced in the future. For

these data, their storage can be decided by the system

because they can be regenerated if their provenance

is known. Hence, the data sets storage strategy is only

applied to the generated data in the cloud that can be

automatically decide the storage status of generated

data sets in applications.

Data Dependency Graph (DDG) is a directed acyclic

graph (DAG), which is based on data provenance in scientific

applications. All the data sets once generated in the cloud,

whether stored or deleted, their references are recorded in

DDG i.e., it depicts the generation relationship of data sets,

with which the deleted data sets can be regenerated from their

nearest existing preceding data sets. Fig.1 depicts a simple

DDG, where every node in the graph denotes a data set. We

denote data set di in DDG as di ϵ DDG. And also d1 pointing

to d2 means that d1 is used to generate d2;d2 pointing to d3 and

d5 means that d2 is used to generate d3 and d5 based on
different operations,d4 and d6 pointing to d7 means that d4 and

d6 are used together to generate d7.To better describe the

relationships of data sets in DDG, we define a symbol The

arrow, , which denotes that two data sets have a generation

relationship, where didj means that di is a predecessor data

set of dj in DDG. For example, in Fig. 1’s DDG, we have

d1d2, d1d4, d5d7, and so on. Furthermore, is transitive,

i.e., didjdkdidj /\ djdk=> didk.

B. DATA SETS STORAGE COST MODEL

In a commercial cloud computing environment,

service providers have their cost models to charge users. In

general, there are two basic types of resources in the cloud:

Computation and storage. Popular cloud services providers

cost models are based on these types of resources. For

example, Amazon cloud services prices are as follows:

 $0.1 per CPU instance hour for the computation

resources;

 $0.15 per Gigabyte per month for the storage

resources;

Therefore the data sets storage cost model in the cloud as

follows:

Cost = Computation + Storage,

Where the total cost of the application data sets

storage, Cost, is the sum of Computation, which is the total

cost of computation resources used to regenerate data sets, and
Storage, which is the total cost of storage resources used to

store the data sets. To utilize the data sets storage cost

model, we define the attributes for the data sets in DDG the

same as in [30].For or data set di, its attributes are denoted as:

<xi,yi,fi,vi,provSeti,CostRi>,where:

 xi denotes the regeneration cost of the data set di

from its direct predecessors in the cloud.

 yi denotes the cost of storing data set di in the

cloud per time unit.

 fi is flag, which denotes the status of whether
data set di is stored or deleted in the cloud.

 vi denotes the usage frequency, which indicates

how often di is used.

 provSeti denotes the set of stored

provenance that are needed when d6 are used

together to generate d7.

C.SENSITIVE INTERMEDIATE DATA SET

MANAGEMENT

Data provenance is used to manage intermediate data

sets. Provenance is commonly defined as the origin, source or

history of derivation of some objects and data, which can be

used as the information upon how data were generated.

Reproducibility of data provenance can help to regenerate data

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 280

Published by SK Research Group of Companies (SKRGC).

sets. The information recorded in data provenance is leveraged

to build up the generation relationships of data sets [6].

Let do be a privacy-sensitive original data set. We use

D= {d1,d2,….,dn} to denote a group of intermediate data sets

generated from d0 where n is the number of intermediate data

sets. The notion of intermediate data herein refers to both

intermediate and resultant data [6]. Directed Acyclic Graph

(DAG) is exploited to capture the topological structure of
generation relationships among these data sets.

Definition 1 (Sensitive intermediate data set graph). A DAG

representing the generation relationships of intermediate data

sets D from do is defined as a sensitive Intermediate data set

Graph, denoted as SIG. Formally, SIG=(V,E), where

V={do}ᴜD, E is a set of directed edges. A directed edge (dp,dc)

in E means that part or all of dc is generated from dp, where

dp,dc ϵ {do}ᴜD. In particular, an SIG becomes a tree

structure if each data set in D is generated from only one

parent data set. Then, we have the following definition for this
situation.

Definition 2 (Sensitive intermediate data set tree (SIT)).An

SIG is defined as a sensitive intermediate data set Tree if it is

a tree structure. The root of the tree is do. An SIG or SIT not

only represents the generation relationships of an original data

set and its intermediate data sets, but also captures the

propagation of privacy-sensitive information in do is scattered

into its offspring data sets. Hence, an SIG or SIT can be

employed to analyze privacy disclosure of multiple data sets.

An intermediate data set is assumed to have been anonymized

to satisfy certain privacy requirements. Privacy leakage of a
data d is denoted as PLs(d), meaning the privacy-sensitive

information obtained by an adversary after d is observed. The

value of PLs(d) can be deduced directly from d. Similarly,

privacy leakages of multiple data sets in D are observed. It is

challenging to acquire the exact value of PLm (D) due to the

inference channels among multiple data sets .

D.PRIVACY-PRESERVING COST PROBLEM

Privacy-Preserving cost of intermediate data sets
stems from frequent en / decryption with charged cloud

services. Cloud service venders have set up various pricing

models to support the pay-as-you-go model, e.g., Amazon web

services pricing model. Practically, en / decryption need

computation power, data storage, and other cloud services. To

avoid pricing details and focus on the discussion of our core

ideas, we combine the prices of various services required by

en / decryption into one. This combined price is denoted as

PR. PR indicates the overhead of en / decryption on per GB

data per execution.

III PROPOSED SYSTEM.
A.PRACTICAL DATA SETS STORAGE STRATEGY

We first enhance the linear CTT-SP algorithm to

incorporate user’s preferences then, we introduce our highly

practical local optimization based storage strategy for

approaching the minimum cost benchmark.

a) Enhanced CTT-SP Algorithm for linear DDG Segment

With the excessive computation and storage

resources in the cloud, users can flexibly choose storage

strategies for application generated data sets. The CCT-SP

algorithm can find the minimum cost storage strategy for

saving the storage cost we have to regenerate it whenever it

needs to be reused. Regeneration causes not only the
computation resources, but also a delay for accessing the data,

i.e., waiting for the set to get ready. Depending on the

requirements of applications, users may have different

tolerable computation delay on accessing different data sets.

Some data sets are stored at an immediate data access.

Furthermore, knowing the minimum cost on storing more data

sets to reduce the average computation delay. We have

enhanced the linear CTT-SP algorithm by introducing two

new parameters that can represent user’s preferences and

provide users some flexibility in using the storage strategy.

The two parameters are denoted as T and λ.
 T is the parameter used to represent user’s tolerance

on data accessing delay. Users need to inform the cloud

service provider about the data sets that they have

requirements on their availabilities. For a data set di, which

needs regeneration, Ti is the delay time that users can tolerant

when they want to access it. Furthermore, T is also related to

the requirements of applications. For example, some

applications may have fixed time constraints [9], such as the

weather forecast application. In this situation, for some

particular data sets, the value for Ti can set according to the

starting time and finishing time (i.e., deadline) of the

application. In a word, T is the time constraint of data sets
regeneration. In the storage strategy, the regeneration time of

any deleted data set di cannot exceed its Ti. Especially, if Ti is

smaller than the generation time of data set di itself (i.e.,

Ti<xi/Pricecpu, where Pricecpu is the price of computation

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 281

Published by SK Research Group of Companies (SKRGC).

resources used to regenerate di in the cloud), then we have to

store di, no matter how expensive di’s storage cost is.

λ is the parameter used to adjust the storage strategy

when users have extra budget on the minimum cost

benchmark to store more data sets for reducing the average

data sets accessing time. Based on users extra budget, we can

calculate a proper value of λ7, which is between 0 and 1. We

multiply every data set di’s storage cost rate (i.e., yi) by λ, and

use it to compare with di’s regeneration cost rate(i.e.,
genCost(di)*vi) for deciding its storage status. Hence, more

data sets tend t be stored, and literally speaking, data sets will

be deleted only when their storage cost rates are (1/λ) times

higher than their regeneration cost rates. For example, λi=0.8

means that users are willing to store data sets with the storage

cost up to 1.25 times higher than the regeneration cost.We

enhance the linear CTT-SP algorithm by incorporating these

two new parameters. As defined in the CTT-SP algorithm, for

every two data sets in the DDG, there is a cost edge in the

Cost Transitive Tournament (CTT), i.e.,

To incorporate the parameter of data accessing delay

tolerance (i.e., T), in the enhanced linear CTT-SP algorithm,

the edge e<di,dj> has to further satisfy the condition:

With this condition, long cost edges may be

eliminated from the CTT. It guarantees that in all storage

strategies found by the algorithm, for any deleted data set di,

its regeneration time is smaller than Ti, if users have the

requirement on its availability.To incorporate the parameter os

users cost preference of storage (i.e., λ), in the enhanced linear

CTT-SP algorithm, we set the weight of a cost edge in CTT as

By introducing the two new parameters, the enhanced

linear CTT-SP algorithm can find the minimum cost storage
strategy of a linear DDG satisfying users preferences on

storage with a time complexity of O(n4), where n is the

number of data sets in the DDG or DDG segment on which

the algorithm applies. These two parameters are generic for

data sets storage strategies and their values are dependent on

the requirements of specific applications.

b) Practical Cost – Effective Data Sets Storage Strategy

 In this section, we introduce our local-optimization-

based data sets storage strategy, which is designed based on

the enhanced linear CTT-SP algorithm. The philosophy is to

derive localized minimum costs instead of a global one,
aiming at approaching the minimum cost benchmark with

highly practical time complexity. Our strategy contains the

following four rules:

Fig. 2. Dividing a DDG into linear DDG segments

Given a general DDG, we first partition the DDG

into linear segments and apply the enhanced CTT-SP

algorithm. We search for the data sets that have multiple direct

predecessors or successors (i.e., the join and split data sets in

the DDG), and use these data sets as the partitioning points ti

divide it into linear DDG segments, as shown in Fig.2. Based
on the linear DDG segments, we use the enhanced linear DDG

segments, we use the enhanced linear CTT-SP algorithm to

find their storage strategies. This is the essence of local

optimization. When new data sets are generated in the system

they are treated as a new DDG segment and added to the old

DDG. Correspondingly, its storage status is calculated in the

same way as the old DDG.When a data set’s usage frequency

is changed, the storage status of the linear DDG segment that

contains this data set is recalculated.

B. PRIVACY LEAKAGE UPPER BOUND CONSTRAINT-

BASED APPROACH FOR PRIVACY PRESERVING

We propose an upper bound constraint-based

approach to select the necessary subset of intermediate

data sets that needs to be encrypted for minimizing

privacy-preserving cost.

a)Basic Notations and Properties on an SIT

Let drϵD denote an intermediate data set in an SIT. Its

directly generated data sets constitute a set CD

(dr) {dr1,…,dri}, where dr1,…,dri∈D. For any

d∈CD(dr),PLs(d)≤Pls(dr) because all information in d is from

dr. Further, let PD(dr)) {dr1,…,drj} be all posterity data sets

generated from dr, where dr1,…, drj∈D. Similar to CD(dr),

PLs(d)≤PLs(dr) for any d∈PD(dr). A subtree of an SIT with dr

∈ D being its root is denoted as SDT(dr).

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 282

Published by SK Research Group of Companies (SKRGC).

b)Recursive Privacy Leakage Constraint Decomposition

To satisfy the PLC, we decompose the PLC recursively

into different layers in an SIT. Let the privacy leakage

threshold required in the layer Li be ɛi, 1 ≤ i ≤ H. The privacy

leakage incurred by UDi in the solution πi can never be larger

than ɛi, i.e., PLm(UDi)≤ɛi. The threshold ɛi can be regarded as

the privacy leakage threshold of the remainder part of an SIT

after the layer Li-1. In terms of the basic idea of our approach,

the privacy leakage constraint PLm(UDi)≤ɛi is substituted by
one of its sufficient conditions. The PLC can be substituted by

a set of privacy leakage constraints, named as PLCi:

The above threshold ɛi, , is calculated by

A local encryption solution in the layer Li is feasible if it

satisfies the PLC1. The set of feasible solution in Li is denoted

as , where j is the number feasible

solutions. Similarly, feasible global encryption solution can be

denoted as , where

Given a feasible global solution for an SIT, we

compress the SIT into a ―compressed‖ tree layer by layer from

L1 to LH, denoted as CT is achieved via three steps. First,

the data sets in EDi are ―compressed‖ into one encrypted node.

According to the EDT property, these compressed nodes

together with the original data set appear to be a string with

the length being H. Second, all offspring data sets of the data
sets in UDi are omitted. This will not affect the privacy

preserving in terms of the RPC property. Third, the data sets

in UDi are compressed into one node. Note that the action

―compressed‖ here is imaginary from a logical perspective for

a demonstration purpose.

c)Minimum Privacy-Preserving Cost

Usually, more than one feasible global encryption

solution exists under the PLC1 constraints, because there are

many alternative local solutions in each layer. Further, each

intermediate data set has various size and frequency of usage,

leading to different overall cost with different solutions.
Therefore, it is desired to find a feasible solution with the

minimum privacy-preserving cost under privacy leakage

constraints. Note that the minimum solution mentioned herein

is somewhat pseudo minimum because an upper bound of

joint privacy leakage is just an approximation of its exact

value. But a solution can be exactly minimal in the sense of

the PLC1 constraints. The minimum cost for privacy

preserving of the data sets after Li-1 under the privacy leakage

threshold ɛi is represented as CMi(ɛi), 1≤ i ≤ H. Given a

feasible local encryption solution πi=(EDi,UDi) in Li, the cost

incurred by the encrypted data sets in Li is denoted as Ci(πi)

Then, CMi(ɛi) is calculated by the recursive formula:

As a result, CM1(ɛ) is the minimum privacy-preserving
cost required in the optimization problem .The privacy-

preserving solution (Denc,Dune) can be determined during the

process of acquiring CM1(ɛ). According to the

specification of CM1(ɛi), an optimal algorithm can be designed

to identify the optimal privacy-preserving solution.

d)Privacy-Preserving Cost Reducing Heuristic Algorithm

In this section we design a heuristic algorithm to reduce

privacy-preserving cost. In the state-search space for an SIT, a

state node SNi in the layer Li herein refers to a vector of

partial local solutions, i.e., SNi corresponds to ,

where Note that the state-search tree

generated according to an SIT is different from the SIT itself,
but the height is the same. Appropriate heuristic information is

quite vital to guide the search path to the goal sate. The goal

state in our algorithm is to find a near-optimal solution in a

limited search space.Heuristic values are obtained via heuristic

functions. A heuristic function, denoted as f(SNi), is defined to

compute the heuristic value of SNi.Generally, f(SNi) consists

of two parts of heuristic information, i.e., f(SNi)=g(SNi)+

h(SNi), where the information g(SNi) is gained from the start

state to the current state node SNi and the information h(SNi)

is estimated from the current state node to the goal state,

respectively.

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 283

Published by SK Research Group of Companies (SKRGC).

Intuitively, the heuristic function is expected to guide the

algorithm to select the data sets with small cost but high

privacy leakage to encrypt. Based in this, g(SNi) is defined

as where Ccur is the privacy-
preserving cost that has been incurred so far, ɛ is the initial

privacy leakage threshold, and ɛi+1 is the privacy leakage

threshold for the layers after Li. Specifically, Ccur is calculated

by

The value of h(SNi) is defined as

h(SNi)=(ɛi+1.Cdes.BFAVG)/PLAVG. Similar to the meaning of

 in g(SNi), smaller ɛi+1 in h(SNi) implies more data
sets before Li+1 are kept unencrypted. If a data set with smaller

depth in an SIT is encrypted, more data sets are possibly

unencrypted than with larger depth, because the former

possibly has more descendant data sets. For a state node SNi,

the data sets in its corresponding EDk are the roots of a variety

of subtrees of the SIT. These trees constitute a forest, denoted

as In h(SNi), Cdes represents the total cost of the data

sets in , and is computed via

 Potentially, the less Cdes

is, the fewer data sets in following layers will be encrypted.

BFAVG is the average branch factor of the forest , and can be

computed by BFAVG=NE/N1, where NE is the number of edges

and NI is the number of internal data sets in .Smaller BFAVG

means the search space for sequent layers will be smaller, so

that we can find a near-optimal solution faster. The value of

PLAVG indicates the average privacy leakage of data sets in

, calculated by

Heruistically, the

algorithm prefers to encrpt the data sets which incur less cost

but disclose more privacy-sensitive information. Thus, higher

PLAVG means more data sets in should be encrypted to

preserve privacy from a global perspective. Based on the

above analysis, the heuristic value of the search node SNi can

be computed by the formula:

Based on this heuristic, we design a heuristic privacy-

preserving cost reduction algorithm, denoted as H_PPCR. The

basic idea is that the algorithm iteratively selects a state node

with the highest heuristic value and then extends its child state

nodes until it reaches a goal state node. The privacy-

preserving solution and corresponding cost are derived from

the goal state.

Extension to SIG

Although SITs can suit many applications, SIGs are also

common, i.e., an intermediate data set can originate from more

than one parent data set Thus, it is possible that PLs(d5) is

larger than PLs(d2) or PLs(d3), resulting in the failure of

Lemma 1 and RPC property. As a result, our approach cannot

be directly applied to an SIG. However, we can adapt it to an

SIG with minor modifications. Let dm denote a merging data

set that inherits data from more than one predecessor. As only

one root data set is assumed to exist in an SIG, all paths from
the root data set do to dm must converge at one point beside dm

itself. Let ds denote this source data set. The inequality

PLs(dm)≤PLs (ds) holds because all privacy information of dm

comes from ds. let PDi(ds) be the set of the offspring data sets

of ds in the layer Li, then PDi(ds)⊆PD(ds). Data sets in PDi(ds)

are split into EDi and UDi when determining which data sets

are encrypted.

We discus three cases where the graph structure can affect

the applicability of our approach on an SIG. The first one is

PDi(ds)⊆UDi, i.e., all data sets in PDi(ds) will keep
unencrypted. All ancestor data sets of dm after the layer Li will

keep unencrypted according to the RPC property. So, the data

set dm poses little influence on applying our algorithm to an

SIC because dm will not be considered in following steps. The

second one is PDi(ds)⊆EDi, i.e., all data sets in PDi(ds) are

encrypted. If dm is a child of a data set in PDi(ds), dm is added

to CDEi+1 for the next round. Assume the parent data set is dp.

Then, we delete the edges pointing to dm from parents except

dp, e.g., (d2,d5) is retained while (d3,d5) and (d4,d5) are deleted

in Fig.3c. Logically, dm can be deemed as a ―compressed‖
candidate data set of several imaginary data sets in CDEi+1,

which is similar to the construction of a compressed tree. The

lastone is that Dx⊆UDi and Dy⊆EDi, where Dx∩Dy=ø and

Dx∩Dy=PDi(ds), i.e., part of data sets in PDi(ds) are encrypted

while the remainder keep unencrypted. According to the RPC

property, it is safe to expose part of privacy information in dm,

where the part of privacy information is from Dx. The edges

which point to dm form data sets in Dx are deleted. Further, the

value of its direct parents who are data sets in Dy or the

offspring of Dy if PLs(dm) is larger than the maximum.

To make the approach for an SIT available to an SIG as

well, three minor modifications are required. The first one is

to identify all merging data sets. The second one is to adjust

the SIG according to the third case discussed above if UDπ ≠ ø

after we get a local solution π=(EDπ,UDπ). The third one is to

label the data sets that have been processed. In this way, it is

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 284

Published by SK Research Group of Companies (SKRGC).

unnecessary to explicitly delete edges discussed in the second

case.

IV SIMULATION RESULT

The random simulations are conducted on randomly
generated DDG with data sets of random sizes, generation

times, and usage frequencies. In the experiments, we use a

linear DDG segment with 50 data sets, each with a random

size from 100 GB to 1 TB. The generation time is also

random, from 1 to 10 hours. The usage frequency is again

random, from 1 to 10 days (time between every usage). The

prices of clod services follow the well-known Amazon’s cost

model, i.e., $0.1 per CPU instance hour for computation and

$0.15 per gigabyte per month for storage.

Fig 3.Performance graph for dataset storage

Overall Performance Evaluation

First, we evaluate the cost-effectiveness of our local-

optimization-based storage strategy. We randomly connect the

linear DDG segments into large DDGs with different numbers

of data sets and utilize different storage strategies to calculate

their cost rates (i.e., average daily cost) of storing the DDGs.
For our local-optimization-based strategy, linear segments are

also treated as the smallest units of the DDG partition. Fig3

shows the increase of the daily cost of different strategies as

the number of data sets grows in the DDG. From Fig. 3, we

can see that the ―store none data set‖ and ―store all data sets‖

strategies are very cost effective, because their daily cost rates

grow fast as the data sets number grows.

The cost rate-based strategy has a better performance

than both the generation cost-based strategy and usage based

strategy, but it is still much higher than the minimum cost

bench mark. Our local-optimization-based strategy is the most

cost-effective data sets storage strategy, which has the average

cost rate only 1.6 percent higher than the minimum cost

benchmark in our random simulations. For a specific example,

for the DDG with 200 data sets, the cost rate of our local-

optimization-based strategy(i.e., USD 145.7 per day) is only
1.5 percent higher than the minimum cost benchmark(i.e.,

USD 143.5 per day). In contrast, the cost rate-based strategy

(the second most cost effective strategy) has the cost rate (i.e.,

USD 173.3 per day)17.2 percent higher than the minimum

cost bench mark. This results indicates that our local-

optimization-based strategy is very close to the minimum cost

benchmark. Next , encrypting all data sets for privacy

preserving is widely adopted in existing research [8], [9], [10].

This category of approach is denoted as ALL_ENC. The

privacy-preserving cost of ALL-ENC is denoted as CALL. To

facilitate the comparison, the privacy-preserving cost of
H_PPCR is denoted as CHEU.

Fig 4. U-Cloud

U-Cloud is a cloud computing environment at the

University of Technology Sydney(UTS). The system over-

view of U-

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 285

Published by SK Research Group of Companies (SKRGC).

Cloud is depicted in Fig. 4. The computing facilities

of this system are located among several labs at UTS. On top

of hardware and Linux operating system, we install KVM

virtualization software which virtualizes the infrastructure and

provides unified computing and storage resources. To create
virtualized data centers, we install OpenStack open-source

cloud environment for global management, resource

scheduling and interaction with users. Further, Hadoop is

installed based on the cloud built via OpenStack to facilitate

massive data processing. Our experiments are conducted in

this cloud environment. The experimental result on real-world

data sets is depicted in Fig. 5, our approach can reduce the

privacy-preserving cost significantly in real-world scenarios.

IV.CONCLUSION

Thus the novel approach for achieving minimum dataset

storage cost by using local optimization based strategy and

linear CTT-SP algorithm was created. To preserve the privacy

of stored intermediate datasets we design an upper bound

constraint approach that identifies which part of intermediate

datasets needs to be encrypted while the rest does not, inorder

to save the privacy preserving cost was used. By

implementing both the storage and privacy preserving

approach ,the cost can be reduced and security will be

increased than the existing system .

REFERENCES:

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz,

A.Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and

M.Zaharia, ―A View of Cloud Computing,‖ Comm. ACM,

vol. 53,no. 4, pp. 50-58, 2010.

[2] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I.

Brandic,―Cloud Computing and Emerging It Platforms:

Vision, Hype, and Reality for Delivering Computing as the
Fifth Utility,‖ Future Generation Computer Systems, vol. 25,

no. 6, pp. 599-616, 2009.

[3] L. Wang, J. Zhan, W. Shi, and Y. Liang, ―In Cloud, Can

Scientific Communities Benefit from the Economies of

Scale?,‖ IEEE Trans.Parallel and Distributed Systems, vol. 23,

no. 2, pp. 296-303, Feb. 2012.

[4] H. Takabi, J.B.D. Joshi, and G. Ahn, ―Security and Privacy

Challenges in Cloud Computing Environments,‖ IEEE

Security & Privacy, vol. 8, no. 6, pp. 24-31, Nov./Dec. 2010.

[5] D. Zissis and D. Lekkas, ―Addressing Cloud Computing

Security Issues,‖ Future Generation Computer Systems, vol.

28, no. 3, pp. 583-592, 2011.

[6] D. Yuan, Y. Yang, X. Liu, and J. Chen, ―On-Demand
Minimum Cost Benchmarking for Intermediate Data Set

Storage in Scientific Cloud Workflow Systems,‖ J. Parallel

Distributed Computing,vol. 71, no. 2, pp. 316-332, 2011.

[7] S.Y. Ko, I. Hoque, B. Cho, and I. Gupta, ―Making Cloud

Intermediate Data Fault-Tolerant,‖ Proc. First ACM Symp.

Cloud Computing (SoCC ’10), pp. 181-192, 2010.

[8] H. Lin and W. Tzeng, ―A Secure Erasure Code-Based

Cloud Storage System with Secure Data Forwarding,‖ IEEE

Trans.Parallel and Distributed Systems, vol. 23, no. 6, pp.
995-1003, June 2012.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ―Privacy-

Preserving Multi-Keyword Ranked Search over Encrypted

Cloud Data,‖ Proc.IEEE INFOCOM ’11, pp. 829-837, 2011.

[10] M. Li, S. Yu, N. Cao, and W. Lou, ―Authorized Private

Keyword Search over Encrypted Data in Cloud Computing,‖

Proc. 31st Int’l Conf. Distributed Computing Systems (ICDCS

’11), pp. 383-392, 2011.

[11] C. Gentry, ―Fully Homomorphic Encryption Using Ideal

Lattices,‖Proc. 41st Ann. ACM Symp. Theory of Computing
(STOC ’09),pp. 169-178, 2009.

[12] B.C.M. Fung, K. Wang, and P.S. Yu, ―Anonymizing

Classification Data for Privacy Preservation,‖ IEEE Trans.

Knowledge and Data Eng., vol. 19, no. 5, pp. 711-725, May

2007.

[13] B.C.M. Fung, K. Wang, R. Chen, and P.S. Yu, ―Privacy-

Preserving Data Publishing: A Survey of Recent

Developments,‖ ACM Computing Survey, vol. 42, no. 4, pp.

1-53, 2010.

[14] X. Zhang, C. Liu, J. Chen, and W. Dou, ―An Upper-

Bound Control Approach for Cost-Effective Privacy

Protection of Intermediate Data Set Storage in Cloud,‖ Proc.

http://www.ijcsjournal.com Volume 2, Issue 1, No 4, 2014. ISSN: 2348-6600.

Reference ID: IJCS-049. PAGE NO: 278-286.

All Rights Reserved ©2014 International Journal of Computer Science (IJCS) 286

Published by SK Research Group of Companies (SKRGC).

Ninth IEEE Int’l Conf. Dependable,Autonomic and Secure

Computing (DASC ’11), pp. 518-525, 2011.

[15] I. Roy, S.T.V. Setty, A. Kilzer, V. Shmatikov, and E.

Witchel,―Airavat: Security and Privacy for Mapreduce,‖ Proc.

Seventh USENIX Conf. Networked Systems Design and

Implementation (NSDI’10), p. 20, 2010.

[16] K.P.N. Puttaswamy, C. Kruegel, and B.Y. Zhao,
―Silverline:Toward Data Confidentiality in Storage-Intensive

Cloud Applications,‖Proc. Second ACM Symp. Cloud

Computing (SoCC ’11), 2011.

[17] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan,

―Sedic:Privacy-Aware Data Intensive Computing on Hybrid

Clouds,‖Proc. 18th ACM Conf. Computer and Comm.

Security (CCS ’11),pp. 515-526, 2011.

[18] V. Ciriani, S.D.C.D. Vimercati, S. Foresti, S. Jajodia, S.

Paraboschi,and P. Samarati, ―Combining Fragmentation and
Encryption to Protect Privacy in Data Storage,‖ ACM Trans.

Information and System Security, vol. 13, no. 3, pp. 1-33,

2010.

[19] S.B. Davidson, S. Khanna, T. Milo, D. Panigrahi, and S.

Roy,―Provenance Views for Module Privacy,‖ Proc. 30th

ACM SIGMOD-SIGACT-SIGART Symp. Principles of

Database Systems (PODS ’11), pp. 175-186, 2011.

[20] S.B. Davidson, S. Khanna, S. Roy, J. Stoyanovich, V.

Tannen, and Y. Chen, ―On Provenance and Privacy,‖ Proc.

14th Int’l Conf.Database Theory, pp. 3-10, 2011.

