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Abstract— Cloud computing provides massive 

computation power and storage capacity which enable users 

to deploy computation and data intensive applications without 

infrastructure investment. Along the processing of such 

applications, a large volume of intermediate datasets will be 

generated and often stored them to save the cost of 

recomputing them. In this paper, toward achieving the 

minimum cost benchmark and for cost effectively storing 

large volume of generated application datasets in the cloud, 

we propose a novel highly cost effective and practical storage 

strategy that can automatically decide whether a generated 

dataset should be stored or not at runtime in the cloud and 

from that stored dataset, inorder to provide security to the 

sensitive dataset,  we propose a novel upper bound privacy 

leakage constraint-based approach to identify which 

intermediate data sets need to be encrypted and which do not, 

so that privacy-preserving cost can be saved and also the 

privacy requirements of data holders can be satisfied.  

Key words—Datasets storage, computation, cloud 

computing, data storage privacy, privacy preserving, 

intermediate dataset, privacy upper bound. 

I.INTRODUCTION 

Cloud computing is regarded as an ingenious 

combination of serious of technologies, establishing a novel 

model by offering several services and using economies of 

scale [1], [2].Participants in the business chain of cloud 
computing can benefit from this model and cloud users can 

save huge capital investment of infrastructure and concentrate 

on their own core business [3].Many companies and 

organizations have been migrating or building their business 

into cloud environment. So in this, during the execution of 

scientific applications a huge amount datasets will be 
generated. These generated datasets contain important 

intermediate or final results of the computation and need to be 

stored as valuable resources. This is because of two reasons. 

First the data can be reused i.e., scientists may need to re-

analyze the results or apply new analyzes on the existing 

datasets [5] .Second the data can be shared i.e., for 

collaboration the computation results are shared and hence the 

datasets are used by scientists from different institutions [6]. 

Storing valuable datasets can save their regeneration cost 

when they are reused. However the big challenge is its huge 

size .Due to this the large amount of storage space and costs 
are required, along with this the major problem is the privacy 

of the dataset holders that is affected due to this storage of 

intermediate datasets in cloud because that can be accessed 

and processed by multiple parties. Cloud computing adopts 

the pay-as-you-go model, where users are charged according 

to the usage of cloud services such as computing, storage and 

network services [7]. 

With the pay-as-you-go model, the total application 

cost in the cloud highly depends on the strategy of storing the 

application datasets, e.g., storing all the generated application 

datasets in the cloud may result in a high storage cost, because 

some datasets may be rarely used but large in size and also 
deleting all the generated datasets and regenerating them every 

time when needed may result in a high computation cost. And 

another major problem due to this storage is security and 

privacy of dataset and dataset holders respectively [4], [5]. 

The privacy concerns caused by retaining intermediate 

datasets in cloud are important. The storage of intermediate 

datasets enlarges attack surfaces so that privacy requirements 

data holders are at risk of being violated. Usually intermediate 

datasets in cloud are accessed and processed by multiple 

parties, but rarely controlled by original dataset holders. This 

enables an adversary to collect intermediate datasets together 
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and menace privacy-sensitive information from them and 

bringing considerable economic loss or severe social 

reputation impairment to data owners.  
 

II. EXISTING SYSTEM 

 

A.APPLICATION DATA AND DDG  
 

There are two types of data stored in the cloud: 

 

1. Original data: These are the data uploaded by users, 

for example, they are usually the raw data.  For these 

data, users need to decide whether they should be 

stored or deleted because they cannot be regenerated 
by the system once deleted. 

2.  

3. General data: These are the data newly produced in 

the cloud while the applications run. They are the 

intermediate or final computation results of the 

applications, which can be reduced in the future. For 

these data, their storage can be decided by the system 

because they can be regenerated if their provenance 

is known. Hence, the data sets storage strategy is only 

applied to the generated data in the cloud that can be 

automatically decide the storage status of generated 

data sets in applications.  

Data Dependency Graph (DDG) is a directed acyclic 

graph (DAG), which is based on data provenance in scientific 

applications. All the data sets once generated in the cloud, 

whether stored or deleted, their references are recorded in 

DDG i.e., it depicts the generation relationship of data sets, 

with which the deleted data sets can be regenerated from their 

nearest existing preceding data sets. Fig.1 depicts a simple 

DDG, where every node in the graph denotes a data set. We 

denote data set di in DDG as di ϵ DDG. And also  d1 pointing 

to d2 means that d1 is used to generate d2;d2 pointing to d3 and 

d5 means that d2 is used to generate d3 and d5 based on 
different operations,d4 and d6 pointing to d7 means that d4 and 

d6 are used together to generate d7.To better describe the 

relationships of data sets in DDG, we define a symbol The 

arrow, , which denotes that two data sets have a generation 

relationship, where didj means that di is a predecessor data 

set of dj in DDG. For example, in Fig. 1’s DDG, we have 

d1d2, d1d4, d5d7, and so on. Furthermore, is transitive, 

i.e.,                          didjdkdidj /\ djdk=> didk. 

 

 

B. DATA SETS STORAGE COST MODEL 

 

In a commercial cloud computing environment, 

service providers have their cost models to charge users. In 

general, there are two basic types of resources in the cloud: 

Computation and storage. Popular cloud services providers 

cost models are based on these types of resources. For 

example, Amazon cloud services prices are as follows: 

 

 $0.1 per CPU instance hour for the computation 

resources; 

 $0.15 per Gigabyte per month for the storage 

resources; 

Therefore the data sets storage cost model in the cloud as 

follows: 

Cost = Computation + Storage, 

 

Where the total cost of the application data sets 

storage, Cost, is the sum of Computation, which is the total 

cost of computation resources used to regenerate data sets, and 
Storage, which is the total cost of storage resources used to 

store the data sets. To utilize the data sets storage cost 

model, we define the attributes for the data sets in DDG the 

same as in [30].For or data set di, its attributes are denoted as: 

<xi,yi,fi,vi,provSeti,CostRi>,where: 

 

 xi denotes the regeneration cost of the data set di 

from its direct predecessors in the cloud. 

 yi  denotes the cost of storing data set di in the 

cloud per time unit. 

 fi is flag, which denotes the status of whether 
data set di is stored or deleted in the cloud. 

 vi denotes the usage frequency, which indicates 

how often di is used. 

 provSeti denotes the set of stored         

provenance that are needed when d6 are used 

together to generate d7. 

C.SENSITIVE INTERMEDIATE DATA SET 

MANAGEMENT 
 

Data provenance is used to manage intermediate data 

sets. Provenance is commonly defined as the origin, source or 

history of derivation of some objects and data, which can be 

used as the information upon how data were generated. 

Reproducibility of data provenance can help to regenerate data 
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sets. The information recorded in data provenance is leveraged 

to build up the generation relationships of data sets [6]. 

 

Let do be a privacy-sensitive original data set. We use 

D= {d1,d2,….,dn} to denote a group of intermediate data sets 

generated from d0 where n is the number of intermediate data 

sets. The notion of intermediate data herein refers to both 

intermediate and resultant data [6]. Directed Acyclic Graph 

(DAG) is exploited to capture the topological structure of 
generation relationships among these data sets. 

 

Definition 1 (Sensitive intermediate data set graph). A DAG 

representing the generation relationships of intermediate data 

sets D from do is defined as a sensitive Intermediate data set 

Graph, denoted as SIG. Formally, SIG=(V,E), where 

V={do}ᴜD, E is a set of directed edges. A directed edge (dp,dc) 

in E means that part or all of dc is generated from dp, where 

dp,dc ϵ {do}ᴜD. In particular, an SIG becomes a tree 

structure if each data set in D is generated from only one 

parent data set. Then, we have the following definition for this 
situation. 

 

Definition 2 (Sensitive intermediate data set tree (SIT)).An 

SIG is defined as a sensitive intermediate data set Tree if it is 

a tree structure. The root of the tree is do. An SIG or SIT not 

only represents the generation relationships of an original data 

set and its intermediate data sets, but also captures the 

propagation of privacy-sensitive information in do is scattered 

into its offspring data sets. Hence, an SIG or SIT can be 

employed to analyze privacy disclosure of multiple data sets. 

An intermediate data set is assumed to have been anonymized 

to satisfy certain privacy requirements. Privacy leakage of a 
data d is denoted as PLs(d), meaning the privacy-sensitive 

information obtained by an adversary after d is observed. The 

value of PLs(d) can be deduced directly from d. Similarly, 

privacy leakages of multiple data sets in D are observed. It is 

challenging to acquire the exact value of PLm (D) due to the 

inference channels among multiple data sets . 

 

 

D.PRIVACY-PRESERVING COST PROBLEM 

 

Privacy-Preserving cost of intermediate data sets 
stems from frequent en / decryption with charged cloud 

services. Cloud service venders have set up various pricing 

models to support the pay-as-you-go model, e.g., Amazon web 

services pricing model. Practically, en / decryption need 

computation power, data storage, and other cloud services. To 

avoid pricing details and focus on the discussion of our core 

ideas, we combine the prices of various services required by 

en / decryption into one. This combined price is denoted as 

PR. PR indicates the overhead of en / decryption on per GB 

data per execution. 
 

III PROPOSED SYSTEM. 
A.PRACTICAL DATA SETS STORAGE STRATEGY 

We first enhance the linear CTT-SP algorithm to 

incorporate user’s preferences then, we introduce our highly 

practical local optimization based storage strategy for 

approaching the minimum cost benchmark. 

a) Enhanced CTT-SP Algorithm for linear DDG Segment 

With the excessive computation and storage 

resources in the cloud, users can flexibly choose storage 

strategies for application generated data sets. The CCT-SP 

algorithm  can find the minimum cost storage strategy for 

saving the storage cost we have to regenerate it whenever it 

needs to be reused. Regeneration causes not only the 
computation resources, but also a delay for accessing the data, 

i.e., waiting for the set to get ready. Depending on the 

requirements of applications, users may have different 

tolerable computation delay on accessing different data sets. 

Some data sets are stored at an immediate data access. 

Furthermore, knowing the minimum cost on storing more data 

sets to reduce the average computation delay. We have 

enhanced the linear CTT-SP algorithm by introducing two 

new parameters that can represent user’s preferences and 

provide users some flexibility in using the storage strategy. 

The two parameters are denoted as T and λ. 
 T is the parameter used to represent user’s tolerance 

on data accessing delay. Users need to inform the cloud 

service provider about the data sets that they have 

requirements on their availabilities. For a data set di, which 

needs regeneration, Ti is the delay time that users can tolerant 

when they want to access it. Furthermore, T is also related to 

the requirements of applications. For example, some 

applications may have fixed time constraints [9], such as the 

weather forecast application. In this situation, for some 

particular data sets, the value for Ti can set according to the 

starting time and finishing time (i.e., deadline) of the 

application. In a word, T is the time constraint of data sets 
regeneration. In the storage strategy, the regeneration time of 

any deleted data set di cannot exceed its Ti. Especially, if Ti is 

smaller than the generation time of data set di itself (i.e., 

Ti<xi/Pricecpu, where Pricecpu is the price of computation 
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resources used to regenerate di in the cloud), then we have to 

store di, no matter how expensive di’s storage cost is. 

λ is the parameter used to adjust the storage strategy 

when users have extra budget on the minimum cost 

benchmark to store more data sets for reducing the average 

data sets accessing time. Based on users extra budget, we can 

calculate a proper value of λ7, which is between 0 and 1. We 

multiply every data set di’s storage cost rate (i.e., yi) by λ, and 

use it to compare with di’s regeneration cost rate(i.e., 
genCost(di)*vi) for deciding its storage status. Hence, more 

data sets tend t be stored, and literally speaking, data sets will 

be deleted only when their storage cost rates are (1/λ) times 

higher than their regeneration cost rates. For example, λi=0.8 

means that users are willing to store data sets with the storage 

cost up to 1.25 times higher than the regeneration cost.We 

enhance the linear CTT-SP algorithm by incorporating these 

two new parameters. As defined in the CTT-SP algorithm, for 

every two data sets in the DDG, there is a cost edge in the 

Cost Transitive Tournament (CTT), i.e., 

  

To incorporate the parameter of data accessing delay 

tolerance (i.e., T), in the enhanced linear CTT-SP algorithm, 

the edge e<di,dj> has to further satisfy the condition: 

 

 
With this condition, long cost edges may be 

eliminated from the CTT. It guarantees that in all storage 

strategies found by the algorithm, for any deleted data set di, 

its regeneration time is smaller than Ti, if users have the 

requirement on its availability.To incorporate the parameter os 

users cost preference of storage (i.e., λ), in the enhanced linear 

CTT-SP algorithm, we set the weight of a cost edge in CTT as 

 

By introducing the two new parameters, the enhanced 

linear CTT-SP algorithm can find the minimum cost storage 
strategy of a linear DDG satisfying users preferences on 

storage with a time complexity of O(n4), where n is the 

number of data sets in the DDG or DDG segment on which 

the algorithm applies. These two parameters are generic for 

data sets storage strategies and their values are dependent on 

the requirements of specific applications.  

b) Practical Cost – Effective Data Sets Storage Strategy 

 In this section, we introduce our local-optimization-

based data sets storage strategy, which is designed based on 

the enhanced linear CTT-SP algorithm. The philosophy is to 

derive localized minimum costs instead of a global one, 
aiming at approaching the minimum cost benchmark with 

highly practical time complexity. Our strategy contains the 

following four rules: 

 
Fig. 2. Dividing a DDG into linear DDG segments 

Given a general DDG, we first partition the DDG 

into linear segments and apply the enhanced CTT-SP 

algorithm. We search for the data sets that have multiple direct 

predecessors or successors (i.e., the join and split data sets in 

the DDG), and use these data sets as the partitioning points ti 

divide it into linear DDG segments, as shown in Fig.2. Based 
on the linear DDG segments, we use the enhanced linear DDG 

segments, we use the enhanced linear CTT-SP algorithm to 

find their storage strategies. This is the essence of local 

optimization. When new data sets are generated in the system 

they are treated as a new DDG segment and added to the old 

DDG. Correspondingly, its storage status is calculated in the 

same way as the old DDG.When a data set’s usage frequency 

is changed, the storage status of the linear DDG segment that 

contains this data set is recalculated. 
 

B. PRIVACY LEAKAGE UPPER BOUND CONSTRAINT-

BASED APPROACH FOR PRIVACY PRESERVING 

We propose an upper bound constraint-based 

approach to select the necessary subset of intermediate 

data sets that needs to be encrypted for minimizing 

privacy-preserving cost.  

a)Basic Notations and Properties on an SIT 

Let drϵD denote an intermediate data set in an SIT. Its 

directly generated data sets constitute a set CD 

(dr) {dr1,…,dri}, where dr1,…,dri∈D. For any 

d∈CD(dr),PLs(d)≤Pls(dr) because all information in d is from 

dr. Further, let PD(dr) ) {dr1,…,drj} be all posterity data sets 

generated from dr, where dr1,…, drj∈D. Similar to CD(dr), 

PLs(d)≤PLs(dr) for any d∈PD(dr). A subtree of an SIT with dr 

∈ D being its root is denoted as SDT(dr). 
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b)Recursive Privacy Leakage Constraint Decomposition 

To satisfy the PLC, we decompose the PLC recursively 

into different layers in an SIT. Let the privacy leakage 

threshold required in the layer Li be ɛi, 1 ≤ i ≤ H. The privacy 

leakage incurred by UDi in the solution πi can never be larger 

than ɛi, i.e., PLm(UDi)≤ɛi. The threshold ɛi can be regarded as 

the privacy leakage threshold of the remainder part of an SIT 

after the layer Li-1. In terms of the basic idea of our approach, 

the privacy leakage constraint PLm(UDi)≤ɛi is substituted by 
one of its sufficient conditions. The PLC can be substituted by 

a set of privacy leakage constraints, named as PLCi: 

 
The above threshold ɛi, , is calculated by 

 
A local encryption solution in the layer Li is feasible if it 

satisfies the PLC1. The set of feasible solution in Li is denoted 

as , where j is the number feasible 

solutions. Similarly, feasible global encryption solution can be 

denoted as , where 

 

Given a feasible global solution for an SIT, we 

compress the SIT into a ―compressed‖ tree layer by layer from 

L1 to LH, denoted as CT  is achieved via three steps. First, 

the data sets in EDi are ―compressed‖ into one encrypted node. 

According to the EDT property, these compressed nodes 

together with the original data set appear to be a string with 

the length being H. Second, all offspring data sets of the data 
sets in UDi are omitted. This will not affect the privacy 

preserving in terms of the RPC property. Third, the data sets 

in UDi are compressed into one node. Note that the action 

―compressed‖ here is imaginary from a logical perspective for 

a demonstration purpose.  

c)Minimum Privacy-Preserving Cost 

Usually, more than one feasible global encryption 

solution exists under the PLC1 constraints, because there are 

many alternative local solutions in each layer. Further, each 

intermediate data set has various size and frequency of usage, 

leading to different overall cost with different solutions. 
Therefore, it is desired to find a feasible solution with the 

minimum privacy-preserving cost under privacy leakage 

constraints. Note that the minimum solution mentioned herein 

is somewhat pseudo minimum because an upper bound of 

joint privacy leakage is just an approximation of its exact 

value. But a solution can be exactly minimal in the sense of 

the PLC1 constraints. The minimum cost for privacy 

preserving of the data sets after Li-1 under the privacy leakage 

threshold ɛi is represented as CMi(ɛi), 1≤ i ≤ H. Given a 

feasible local encryption solution πi=(EDi,UDi) in Li, the cost 

incurred by the encrypted data sets in Li is denoted as Ci(πi) 

 

Then, CMi(ɛi) is calculated by the recursive formula: 

 

As a result, CM1(ɛ) is the minimum privacy-preserving 
cost required in the optimization problem .The privacy-

preserving solution (Denc,Dune) can be determined during the 

process of acquiring CM1(ɛ). According to the 

specification of CM1(ɛi), an optimal algorithm can be designed 

to identify the optimal privacy-preserving solution.  

d)Privacy-Preserving Cost Reducing Heuristic Algorithm 

In this section we design a heuristic algorithm to reduce 

privacy-preserving cost. In the state-search space for an SIT, a 

state  node SNi in the layer Li herein refers to a vector of 

partial local solutions, i.e., SNi corresponds to , 

where  Note that the state-search tree 

generated according to an SIT is different from the SIT itself, 
but the height is the same. Appropriate heuristic information is 

quite vital to guide the search path to the goal sate. The goal 

state in our algorithm is to find a near-optimal solution in a 

limited search space.Heuristic values are obtained via heuristic 

functions. A heuristic function, denoted as f(SNi), is defined to 

compute the heuristic value of SNi.Generally, f(SNi) consists 

of two parts of heuristic information, i.e., f(SNi)=g(SNi)+ 

h(SNi), where the information g(SNi) is gained from the start 

state to the current state node SNi and the information h(SNi) 

is estimated from the current state node to the goal state, 

respectively. 
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Intuitively, the heuristic function is expected to guide the 

algorithm to select the data sets with small cost but high 

privacy leakage to encrypt. Based in this, g(SNi) is defined 

as  where Ccur is the privacy-
preserving cost that has been incurred so far, ɛ is the initial 

privacy leakage threshold, and ɛi+1 is the privacy leakage 

threshold for the layers after Li. Specifically, Ccur is calculated 

by   

The value of h(SNi) is defined as 

h(SNi)=(ɛi+1.Cdes.BFAVG)/PLAVG. Similar to the meaning of 

 in g(SNi), smaller ɛi+1 in h(SNi) implies more data 
sets before Li+1 are kept unencrypted. If a data set with smaller 

depth in an SIT is encrypted, more data sets are possibly 

unencrypted than with larger depth, because the former 

possibly has more descendant data sets. For a state node SNi, 

the data sets in its corresponding EDk are the roots of a variety 

of subtrees of the SIT. These trees constitute a forest, denoted 

as   In h(SNi), Cdes represents the total cost of the data 

sets in , and is computed via 

 Potentially, the less Cdes 

is, the fewer data sets in following layers will be encrypted. 

BFAVG is the average branch factor of the forest , and can be 

computed by BFAVG=NE/N1, where NE is the number of edges 

and NI is the number of internal data sets in .Smaller BFAVG 

means the search space for sequent layers will be smaller, so 

that we can find a near-optimal solution faster. The value of 

PLAVG indicates the average privacy leakage of data sets in 

, calculated by 

Heruistically, the 

algorithm prefers to encrpt the data sets which incur less cost 

but disclose more privacy-sensitive information. Thus, higher 

PLAVG means more data sets in should be encrypted to 

preserve privacy from a global perspective. Based on the 

above analysis, the heuristic value of the search node SNi can 

be computed by the formula: 

 
Based on this heuristic, we design a heuristic privacy-

preserving cost reduction algorithm, denoted as H_PPCR. The 

basic idea is that the algorithm iteratively selects a state node 

with the highest heuristic value and then extends its child state 

nodes until it reaches a goal state node. The privacy-

preserving solution and corresponding cost are derived from 

the goal state. 

 

Extension to SIG 

Although SITs can suit many applications, SIGs are also 

common, i.e., an intermediate data set can originate from more 

than one parent data set Thus, it is possible that PLs(d5) is 

larger than PLs(d2) or PLs(d3), resulting in the failure of 

Lemma 1 and RPC property. As a result, our approach cannot 

be directly applied to an SIG. However, we can adapt it to an 

SIG with minor modifications. Let dm denote a merging data 

set that inherits data from more than one predecessor. As only 

one root data set is assumed to exist in an SIG, all paths from 
the root data set do to dm must converge at one point beside dm 

itself. Let ds denote this source data set. The inequality 

PLs(dm)≤PLs (ds) holds because all privacy information of dm 

comes from ds. let PDi(ds) be the set of the offspring data sets 

of ds in the layer Li, then PDi(ds)⊆PD(ds). Data sets in PDi(ds) 

are split into EDi and UDi when determining which data sets 

are encrypted. 

 

We discus three cases where the graph structure can affect 

the applicability of our approach on an SIG. The first one is 

PDi(ds)⊆UDi, i.e., all data sets in PDi(ds) will keep 
unencrypted. All ancestor data sets of dm after the layer Li will 

keep unencrypted according to the RPC property. So, the data 

set dm poses little influence on applying our algorithm to an 

SIC because dm will not be considered in following steps. The 

second one is PDi(ds)⊆EDi, i.e., all data sets in PDi(ds) are 

encrypted. If  dm is a child of a data set in PDi(ds), dm is added 

to CDEi+1 for the next round. Assume the parent data set is dp. 

Then, we delete the edges pointing to dm from parents except 

dp, e.g., (d2,d5) is retained while (d3,d5) and (d4,d5) are deleted 

in Fig.3c.  Logically, dm can be deemed as a ―compressed‖ 
candidate data set of several imaginary data sets in CDEi+1, 

which is similar to the construction of a compressed tree. The 

lastone is that Dx⊆UDi and Dy⊆EDi, where Dx∩Dy=ø and 

Dx∩Dy=PDi(ds), i.e., part of data sets in PDi(ds) are encrypted 

while the remainder keep unencrypted. According to the RPC 

property, it is safe to expose part of privacy information in dm, 

where the part of privacy information is from Dx. The edges 

which point to dm form data sets in Dx are deleted. Further, the 

value of its direct parents who are data sets in Dy or the 

offspring of Dy if PLs(dm) is larger than the maximum. 
 

To make the approach for an SIT available to an SIG as 

well, three minor modifications are required. The first one is 

to identify all merging data sets. The second one is to adjust 

the SIG according to the third case discussed above if UDπ ≠ ø 

after we get a local solution π=(EDπ,UDπ). The third one is to 

label the data sets that have been processed. In this way, it is 
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unnecessary to explicitly delete edges discussed in the second 

case. 

IV SIMULATION RESULT 

 

The random simulations are conducted on randomly 
generated DDG with data sets of random sizes, generation 

times, and usage frequencies. In the experiments, we use a 

linear DDG segment with 50 data sets, each with a random 

size from 100 GB to 1 TB. The generation time is also 

random, from 1 to 10 hours. The usage frequency is again 

random, from 1 to 10 days (time between every usage). The 

prices of clod services follow the well-known Amazon’s cost 

model, i.e., $0.1 per CPU instance hour for computation and 

$0.15 per gigabyte per month for storage. 
 

 

Fig 3.Performance graph for dataset storage 

 

Overall Performance Evaluation 

First, we evaluate the cost-effectiveness of our local-

optimization-based storage strategy. We randomly connect the 

linear DDG segments into large DDGs with different numbers 

of data sets and utilize different storage strategies to calculate 

their cost rates (i.e., average daily cost) of storing the DDGs. 
For our local-optimization-based strategy, linear segments are 

also treated as the smallest units of the DDG partition. Fig3 

shows the increase of the daily cost of different strategies as 

the number of data sets grows in the DDG. From Fig. 3, we 

can see that the ―store none data set‖ and ―store all data sets‖ 

strategies are very cost effective, because their daily cost rates 

grow fast as the data sets number grows.  

 

The cost rate-based strategy has a better performance 

than both the generation cost-based strategy and usage based 

strategy, but it is still much higher than the minimum cost 

bench mark. Our local-optimization-based strategy is the most 

cost-effective data sets storage strategy, which has the average 

cost rate only 1.6 percent higher than the minimum cost 

benchmark in our random simulations. For a specific example, 

for the DDG with 200 data sets, the cost rate of our local-

optimization-based strategy(i.e., USD 145.7 per day) is only 
1.5 percent higher than the minimum cost benchmark(i.e., 

USD 143.5 per day). In contrast, the cost rate-based strategy 

(the second most cost effective strategy) has the cost rate (i.e., 

USD 173.3 per day)17.2 percent higher than the minimum 

cost bench mark. This results indicates that our local-

optimization-based strategy is very close to the minimum cost 

benchmark. Next , encrypting all data sets for privacy 

preserving is widely adopted in existing research [8], [9], [10]. 

This category of approach is denoted as ALL_ENC. The 

privacy-preserving cost of ALL-ENC is denoted as CALL. To 

facilitate the comparison, the privacy-preserving cost of 
H_PPCR is denoted as CHEU. 

 

Fig 4. U-Cloud 

 

U-Cloud is a cloud computing environment at the 

University of Technology Sydney(UTS). The system over-

view of U- 
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Cloud is depicted in Fig. 4. The computing facilities 

of this system are located among several labs at UTS. On top 

of hardware and Linux operating system, we install KVM 

virtualization software which virtualizes the infrastructure and 

provides unified computing and storage resources. To create 
virtualized data centers, we install OpenStack open-source 

cloud environment for global management, resource 

scheduling and interaction with users. Further, Hadoop is 

installed based on the cloud built via OpenStack to facilitate 

massive data processing. Our experiments are conducted in 

this cloud environment. The experimental result on real-world 

data sets is depicted in Fig. 5, our approach can reduce the 

privacy-preserving cost significantly in real-world scenarios.  

IV.CONCLUSION 

Thus the novel approach for achieving minimum dataset 

storage cost by using local optimization based strategy and 

linear CTT-SP algorithm was created. To preserve the privacy 

of stored intermediate datasets we design an upper bound 

constraint approach that identifies which part of intermediate 

datasets needs to be encrypted while the rest does not, inorder 

to save the privacy preserving cost was used. By 

implementing both the storage and privacy preserving 

approach ,the cost can be reduced and security will be 

increased than the existing system . 
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