

http://www.ijcsjournal.com Volume 3, Issue 1, No 5, 2015. ISSN: 2348-6600

Reference ID: IJCS-092 PAGE NO: 525-530.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 525

Published by SK Research Group of Companies (SKRGC).

ENHANCED DYNAMIC PROTECTION

SCHEME IN SAAS IN CLOUDS USING

ANOMALY SOFTWARE AGENT SYSTEM
B.Prakash

(Third Year MCA, Nandha Engineering College, Erode, Anna University, Tanil Nadu)
mcaprakashb@gmail.com

Abstract— SaaS cloud systems often host long-running

applications like massive data processing, which provides more

opportunities for attackers to exploit the system vulnerability

and leak the information to misuse. In this paper we propose an

enhanced Dynamic security scheme in SaaS in Clouds using

Anomaly Software Agent system. The primary benefit of an

Agent-based Information Leakage Detection system lies in the

ability to modify and add detection capabilities, modularize those

capabilities, and then conditionally employ such capabilities at

the discretion of a central control mechanism (in our system, the

Controller Agent). The use of mobile agents as described in this

paper, and in general, reduces the per-host administrative

complexity as once the initial agent environment is properly

installed and configured; all further necessary actions are

performed by the agents themselves. Additionally, mobile agents

are able to provide unique reporting capabilities that, for the

purposes of our research, may benefit the analysis of information

leakage, protection and the underlying covert channels through

which information has been leaked.

Index Terms—Distributed Service, Data Privacy, Application
Service Providers (ASPs), Anomaly Software Agent. (Key words)

I. INTRODUCTION

Cloud computing is a technology helps us to keep up data

and its application by using internet and central remote servers

[3]. Cloud computing has greater flexibility and availability at

lower cost. The four deployment models operated by cloud

computing are the: Public Cloud, Private Cloud, Community

Cloud, and Hybrid Cloud. Private cloud -- The cloud

infrastructure is operated solely for an organization. It may be

managed by the organization or a third party and may exist on

premise or off premise. Community cloud -- The cloud
infrastructure is shared by several organizations and supports a

specific community that has shared concerns. It may be

managed by the organizations or a third party and may exist

on premise or off premise. There are different types of cloud

service providers like Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as a Service

(SaaS).Here we are discussing about how to protect leakage in

SaaS Cloud server.

The Software as a Service (SaaS) is a software distribution

model in which applications are hosted by a vendor or service

provider and made this is available to customers over a

network. SaaS service are suffered from many malicious
attacks hence they need security.

We propose an information leakage detection (ILD) agent

system to automate the processes of converting a regular cloud

server to colored one.(i.e. SaaS cloud server) Furthermore,

The distributed reporting potential of mobile agent networks

can lend itself well to future analysis of information leakage,

as well as the underlying covert channel techniques. The agent

based approach also makes the coloring scheme effective in an

open system which is a hybrid of machines running modified

cloud systems and commodity ones. Given comparable

requirements for a small memory footprint and ease of

integration with relatively low-level system constructs
necessary to accomplish efficient file system monitoring

process.

II. RELATED WORK

The previous work has provided various software integrity

attestation solutions [1], [2], [3], [4]-[8], those techniques

often require special trusted hardware or secure kernel

support, which makes them difficult to be deployed on large-

scale cloud computing infrastructures. Traditional Byzantine

fault tolerance (BFT) techniques [9], [10] can detect arbitrary

misbehaviors using full-time majority voting (FTMV) over all

replicas, which however incur high overhead to the cloud
system.

In this section, we present IntTest, a new integrated service

integrity attestation framework for multitenant cloud systems.

IntTest provides a practical service integrity attestation

scheme that does not assume trusted entities on third-party

service provisioning sites or require application modifications.

http://www.ijcsjournal.com Volume 3, Issue 1, No 5, 2015. ISSN: 2348-6600

Reference ID: IJCS-092 PAGE NO: 525-530.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 526

Published by SK Research Group of Companies (SKRGC).

IntTest builds upon our previous work RunTest [10] and

AdapTest [11] but can provide stronger malicious attacker

pinpointing power than RunTest and AdapTest. Specifically,

both RunText and AdapTest as well as traditional majority

voting schemes need to assume that benign service providers

take majority in every service function. However, in large-

scale multitenant cloud systems, multiple malicious attackers

may launch colluding attacks on certain targeted service

functions to invalidate the assumption. To address the

challenge, IntTest takes a holistic approach by systematically

examining both consistency and inconsistency relationships
among different service providers within the entire cloud

system. IntTest examines both per-function consistency

graphs and the global inconsistency graph.

The per-function consistency graph analysis can limit the

scope of damage caused by colluding attackers, while the

global inconsistency graph analysis can effectively expose

those attackers that try to compromise many service functions.

Hence, IntTest can still pinpoint malicious attackers even if

they become majority for some service functions.

III. PROBLEM FORMATION

Given an SaaS cloud system, the goal of ILD agent system
is to pinpoint any malicious service provider that offers an

untruthful service function. ILD agent system treats all service

components as black boxes, which does not require any

special hardware or secure kernel support on the cloud

platform. The automate the process of detecting and coloring

receptive hosts’ file systems and monitoring the colored file

system for instances of potential information leakage.

IV. ILD AGENT SYSTEM

Separation of powers and responsibilities in an agent

community encourages flexibility and encapsulation. As such,

our proposed agent system will be heterogeneous with

members belonging to one of six principle archetypes, each
adhering to unique roles and possessing distinct abilities.

Figure 1 depicts the classifications of our Information Leakage

Detection (ILD) Agent system and the respective agent ranks.

All inter-agent communications will adhere to FIPA Agent

Communication Language (ACL) specifications in order to

maintain communication interoperability between different

agent platforms, Properties and responsibilities of each type of

agent are discussed in following subsections.

Fig. 1. Agent Classifications and Hierarchy

A. Controller Agents (CA)

Controller Agents are responsible for dispatching

subordinate agents and coordinating their respective activities

in a designated network. Additionally, Controller Agents will

coordinate the remote installation of the necessary mobile
agent environment and other required software packages on

target hosts with Environment Agents. Multiple instances of

controller agents can be dispatched to ensure proper coverage

of large networks as well as to accomplish load distribution

for the purposes of performance optimization.

B. Detection Agents (DA)

The main functionality of Detection Agents is to identify

new hosts in the network and to verify the host’s states. In our

initial design, a host’s state will refer to the presence or
absence of untrusted cloud server and the trusted cloud server

infrastructure. Once determined, a host’s state will be reported

to the Controller Agent to aid in the identification of

subsequent actions.

C. Queue Agents (QA)

To avoid overwhelming Controller Agents and to provide

an orderly approach to dispatching agents to newly discovered

hosts, Queue Agents will be useful. As stated above, when a

Detection Agent identifies a new remote host, the host’s state
is reported to a Controller Agent. Rather than dispatching

agents to a new host immediately, it may be preferred to defer

such processing for some time, especially in the case when

many such hosts are reported at once. In such cases, hosts are

reported by Controller Agents to Queue Agents which

http://www.ijcsjournal.com Volume 3, Issue 1, No 5, 2015. ISSN: 2348-6600

Reference ID: IJCS-092 PAGE NO: 525-530.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 527

Published by SK Research Group of Companies (SKRGC).

prioritize hosts for subsequent processing by, and at the

request of, Controller Agents.

D. Monitor Agents (MA)

Monitor Agents will perform active monitoring on the host

file system through the subsystem to identify file write and

creation operations. Details on the subsystem will be

discussed in the next section. When a write operation or file

creation operation takes place, Monitor Agents notify
Watermarking Agents which can then perform watermark

analysis of the file in question.

As comparable capabilities are already present in trusted

cloud server hosts, Monitor Agents will only reside in

untrusted cloud server host machine.

E. Watermarking Agents (WA)

Similar to Monitor Agents, Watermarking Agents shall

only be present untrusted (become malicious) cloud server as
determined by Detection Agents. The responsibility of these

agents is to watermark all files on a host’s file system and to

perform subsequent watermark analysis at the request of

Monitor Agents.

F. Permission Agents (PA)

A central Permission Agent handles permissions issues

involving Monitor Agents and Watermarking Agents with

their target hosts. Specifically, the Permission Agent should

ensure that such agents are given only those permissions
necessary to perform their respective tasks. In addition, the

Permission Agent ensures that all permissions necessary for

agent environment installation by the Environment Agent are

in place.

G. Environment Agents (EA)

Minimally, Watermarking and Monitor Agents require the

necessary agent environment installed on a target host in order

to reside and function there. Also, depending on the type of

watermarking employed, certain watermarking specific
software dependencies which may not reasonably be

accommodated by the Watermarking Agents themselves can

exist. Environment Agents will be responsible for handling all

such software dependencies without the intervention of the

target host’s administrator.

Fig. 2. Process flow of our proposed system.

V. PROPOSED STRATEGIES

A. Host Discovery

In our proposed agent system, all operations begin with,

and are coordinated by, the Controller Agent. Initially, it is

assumed that all hosts in the network are clean, yet unknown.
A Detection Agent is dispatched to scan the network for

untrusted cloud server hosts. When the first such host is

discovered, the Detection Agent determines whether or not the

newly found host is “Colored.” If the host is trusted cloud

server (benign server) means, it is reported to the Controller

Agent.

B. Non-Colored Host Queuing

When the first non-Colored, untrusted cloud server -based

host is identified and reported by the Detection Agent, the

Controller Agent shall create a Queue Agent and make it

aware of the reported host.

All subsequent host reports generated by the Detection

Agent will also be forwarded to the Queue Agent. Hosts are

enquired, possibly with priorities, by the Queue Agent. At

certain times, the Controller Agent will query the Queue
Agent for a new host, which the Queue Agent will reverse

queue and forward to the Controller Agent.

C. Permission Determination and Management

Given a host report from the Queue Agent, the Controller

Agent will create a Permission Agent and assign it to the new

host. The permission agent will attempt to determine if the

proper permissions are in place for the successful remote

installation of an agent environment on the target host, and for
the proper operation of subsequently dispatched

Watermarking and Monitor agents.

http://www.ijcsjournal.com Volume 3, Issue 1, No 5, 2015. ISSN: 2348-6600

Reference ID: IJCS-092 PAGE NO: 525-530.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 528

Published by SK Research Group of Companies (SKRGC).

If proper permissions have not been assigned, the

Permission Agent is responsible for coordinating with the

target host to establish the lacking permissions at Once this

process has completed.

The Controller Agent remotely installs (with the aid of a

helper Environment Agent) the appropriate agent environment

on the target host.

D. Watermarking Target Hosts

Following the successful installation of the agent

environment on the target host, the Controller Agent

dispatches a Watermarking Agent to the host. Within the host,

the Watermarking Agent “colors” all files on the host’s file

system. Upon completion of initial coloring, the

Watermarking Agent reports completion to the Controller

Agent, and then awaits subsequent commands. Detection of a

newly created file, or of write operations performed on an

existing file, are reported to the Watermarking Agent by the

Monitor Agent, prompting the Watermarking Agent to analyze

and possibly color the new file. This process continues until
the Controller Agent instructs the Watermarking Agent to

terminate. This agent will then use the proposed methods to

detect and handle potential instances of information leakage.

VI. IMPLEMENTATION AND RESULTS

A. AGENT ENVIRONMENT

In choosing an appropriate foundation for our agent
community, we considered primarily the associated memory

footprint as well as ease of access to system-level constructs.

Mobile-C was hence accepted as our mobile agent framework

due to its low memory footprint when compared to other

popular agent architectures. In addition, being fully compliant

enables Mobile-C agents to take direct advantage of the

system calls provided by the Anomaly Software Agent

system. This is especially useful for our purposes as our

Monitor Agent relies on Controller Agents system.

B. Watermarking Algorithms

As different file types require different watermarking

schemes, we focused on image files for our experiments. The

watermarking algorithm utilized is the Dugad [12] algorithm

as implemented in Peter Meerwald’s watermarking library.

This algorithm has many nice properties, especially that of

blindness, which is required for our system.

C. Handling Dependencies

External dependencies can be handled in several ways in

mobile agent systems. Ideally, all necessary code can

efficiently be carried with the agent itself. When this is not

viable, the agent execution environment can be made to

handle such dependencies. An Environment Agent capable of

retrieving, building, and installing into the execution

environment packages which are needed by Watermarking

Agents shall be employed. This will be helpful as new

watermarking techniques and information leakage detection

methods are developed which may require large and complex

software suites to function.

D. Implementation of the Watermarking Agent

As described above, the primary role of a Watermarking

Agent is to prepare a file system for information leakage

detection by watermarking all files with a particular

permissions tag. Such tags essentially identify the sensitivity

of a file and are used in conjunction with permissions assigned

to individual users. A user’s permissions regulate which files

are accessible by the user. Here, accessibility can relate to the

ability of a user to read, write, or execute a file, or perform

any combination of these actions. Information leakage via
covert channels may result in the removal or modification of

traditional permissions tags. The recipient of the leaked

information may alter the tags in order to grant himself access

to the information that he was not intended to possess.

Functionally, the Watermarking Agent developed for our

experiments initiates a complete scan of the target file system

upon entry into a target host. It could be the case that the file

system, or portions of it, is already watermarked but the agent,

agency, or supporting infrastructure was damaged or removed

due to some unforeseen circumstance.

Therefore, the Watermarking Agent will attempt to detect

the presence of a watermark in all scanned files prior to
watermarking. If a watermark is not detected, the file is

watermarked immediately with a signature corresponding to

the files permissions tag. Conversely, if a watermark is

detected, the Watermarking Agent will compare the

watermark with the file’s permissions tag. If an inconsistency

is found, the file is assumed to have been previously leaked,

and is either quarantined in a secure directory or securely

deleted. Once the initial watermarking phase is complete, the

Watermarking Agent will become dormant. A Watermarking

Agent will be awakened upon receipt of signal from the

Monitor Agent indicating that a new file has been created and
will therefore need to be watermarked1. Algorithm 1 provides

a broad representation of the operations performed by our

Watermarking Agent.

http://www.ijcsjournal.com Volume 3, Issue 1, No 5, 2015. ISSN: 2348-6600

Reference ID: IJCS-092 PAGE NO: 525-530.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 529

Published by SK Research Group of Companies (SKRGC).

Algorithm 1 Watermark (Directory D)

1: while D has children do

2: di child i of D

3: if di is a directory then

4: Watermark(di)
5: else

6: boolean w = DetectWatermark(di)

7: if w = TRUE then

8: Compare watermark of di with

 permissions tag

9: if Watermark does not match tag then

10: Quarantine or Securely Remove di

11: end if

12: else

13: Watermark di with signature =

 permissions tag
14: end if

15: end if

16:end while

17: return

E. Implementation of the Monitor Agent

While the Watermarking Agent effectively binds a files
permissions tag to its content, it does not compare the

watermark to the permissions of a user attempting to access

the file. This task is the responsibility of the Monitor Agent.

The Monitor Agent serves the primary role of monitoring the

target file system for any file “creation” or “write” operations

and notifying the watermarking Agent of such events for

subsequent processing. As stated above, Algorithm 2 steps

represent the Monitor Agent operations.

Algorithm 2 Monitor()

1: W ← inotify event descriptor

2: for all Target directories di do

 3: Add inotify watch descriptor for “write” and “create”

operations within di

4: end for

5: loop

6: f ← Read event from event descriptor W

7: Pass f to Watermarking Agent for Analysis
8: end loop

F. Results

Regardless of the type of covert channel through which

information is leaked, the detection methods of effectively

prevent any disassociation of the leaked information content

from its designated permissions from being used by the

recipient of the leaked information. If permissions 1For future

works, the Watermarking Agent shall be made able to detect

valid changes of permissions tags, and re-watermark files

accordingly.

VII.CONCLUSION AND FUTUTRE WORK

In this paper ,we have presented ILD system (i.e. Software

Agent system) to automate the process of detecting and
coloring receptive hosts’ file systems and monitoring the

colored file system for instances of potential information

leakage in SaaS clouds. Furthermore, ILD system provides

result auto correction to automatically correct compromised

results to improve the result quality. Our experimental results

show that it can achieve higher leakage protection accuracy

than existing alternative schemes. Agent systems are

lightweight, which imposes low-performance impact to the

data processing services running inside the cloud

infrastructure.

Future work in this area may lead to the inclusion of
techniques aimed at detecting and blocking covert channels

prior to the occurrence of information leakage. Given the

highly varied nature of covert channeling methods, detecting

all such methods is likely a matter for which a solution can

only be obtained through the liberal use of techniques rooted

deeply in the field of cloud security.

VIII.REFERENCES

[1] J. Garay and L. Huelsbergen, “Software Integrity

Protection Using Timed Executable gents,”Proc. Mar.

2006

[2] S. Berger et al., “TVDc: Managing Security in the

Trusted Virtual Datacenter,” ACM IGOPS Operating
Systems Rev., vol. 42, no. 1, pp. 40-47, 2008.

[3] T. Garfinkel et al., “Terra: A Virtual Machine-Based

Platform for Trusted Computing,”Proc.19th ACM Symp.

Operating Systems Principles (SOSP), Oct. 2003.

[4] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,

and P. Khosla,“Pioneer: Verifying Code Integrity and

Enforcing Untampered Code Execution on Legacy

Systems,” Proc. 20th ACM Symp.Oct. 2005.

[5] E. Shi, A. Perrig, and L.V. Doorn, “Bind: A Fine-

Grained Attestation Service for Secure Distributed

Systems,” Proc. IEEE Symp. Security and Privacy, 2005.

http://www.ijcsjournal.com Volume 3, Issue 1, No 5, 2015. ISSN: 2348-6600

Reference ID: IJCS-092 PAGE NO: 525-530.

All Rights Reserved ©2015 International Journal of Computer Science (IJCS Journal) Page 530

Published by SK Research Group of Companies (SKRGC).

[6] The Trusted Computing Group website,

https://www.trustedcomputinggroup.org, 2013.

[7] J.L. Griffin, T. Jaeger, R. Perez, and R. Sailer,

“Trusted Virtual Domains: Toward Secure Distributed

Services,” Proc. First Workshop Hot Topics in System

Dependability, June 2005.

[8] L. Lamport, R. Shostak, and M. Pease, “The

Byzantine Generals Problem,” ACM Trans.Programming

Languages and Systems, vol. 4,no. 3, pp. 382-401, 1982.

[9] T. Ho et al., “Byzantine Modification Detection in

Multicast Networks Using Randomized Network Coding,”
Proc. IEEE Int’l Symp. Information Theory (ISIT), 2004.

[10] J.Du,W.Wei, X. Gu, and T. Yu, “Runtest: Assuring

Integrity of Dataflow Processing in Cloud Computing

Infrastructures,”ACM Symp. (ASIACCS), 2010.

[11] J. Du, N. Shah, and X. Gu, “Adaptive Data-Driven

Service Integrity Attestation for Multi-Tenant Clo`ud

Systems,” Proc. Int’l Workshop Quality of Service

(IWQoS), 2011.

[12]R. Dugad, K. Ratakonda, and N. Ahuja, “A New

Wavelet-based Scheme for Watermarking Images”. In

Proceedings of the International Conference on Image
Processing, vol. 2, pp. 419-423, Oct. 1998.

