A note on annihilating ideal graph of z_{n}

N. Mohamed Rilwan ${ }^{1}$ and E. Chidambaram ${ }^{2}$
${ }^{1,2}$ Department of Mathematics
Sadakathullah Appa College,
Tirunelveli - 627011
Email: rilwan2020@gmail.com, chidambaram.e@gmail.com

Abstract

Let R be a commutative ring with identity and $\mathrm{A}^{*}(R)$ the set of non-zero ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph $\operatorname{AG}(R)$ with the vertex set $\mathrm{A}^{*}(R)$ and two distinct vertices I_{1} and I_{2} are adjacent if and only if $I_{1} I_{2}=(0)$. In this paper, we obtain a characterization for the annihilating-ideal graph $\mathrm{AG}(R)$ to be unicyclic, claw-free and outerplanar when $$
R=\mathrm{Z}_{n} .
$$

Keywords: claw-free graph, outer planar graph, unicyclic graph.
Subject Classification: 05C38, 05C75, 13A15.

1 Introduction

The study of algebraic structures using the properties of graphs became an exciting research topic in the past years leading to many fascinating results and questions. There are many papers assigning graphs to rings, groups and semigroups. Let R be a commutative ring with identity. In [1], D. F. Anderson and P. S. Livingston associate a graph called zero-divisor graph, $\Gamma(R)$ to R with vertices $Z(R)^{*}$, the set of non-zero zero-divisors of R and for two distinct $x, y \in Z(R)^{*}$, the vertices x and y are adjacent if and only if $x y=0$ in R. Recently M. Behboodi and Z. Rakeei [4,5] have introduced and investigated the annihilating-ideal graph of a commutative ring. We call an ideal I_{1} of R, an annihilating-ideal if there exists a non-zero ideal I_{2} of R such that $I_{1} I_{2}=(0)$. For a non-domain commutative ring R, let $J(R)$ be the Jacobson radical of R and $\langle x\rangle$ be the ideal of R generated by x and $\mathrm{A}^{*}(R)$ be the set of non-zero ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph $\operatorname{AG}(R)$ with the vertex set $\mathrm{A}^{*}(R)$ and two distinct vertices I_{1} and I_{2} are adjacent if and only if $I_{1} I_{2}=(0)$.

[^0]Page 2267

An ideal I of R is called nil-ideal if there exists a positive integer n such that $I^{n}=0$ and $I^{n-1} \neq(0)$. This integer n is called the nilpotency of the ideal. The annihilator of $a \in R$ is the set of all elements x in R such that $a x=0$ and is denoted by $a n n(a)$. Let I be a non-zero ideal in R, $\operatorname{ann}(I)=\{x \in R: x a=0$ forall $a \in I\}$. For basic definitions on rings, one may refer [2, 8].

Let $G=(V, E)$ be a simple connected graph. For a vertex $v \in V(G)$, the neighborhood (degree) of v, denoted by $N_{G}(v)\left(\operatorname{deg}_{G}(v)\right)$, is the set (number) of vertices other than v which are adjacent to v. For basic definitions on graphs, one may refer [6, 11]. In this paper, we obtain a characterization for the annihilating-ideal graph $\mathrm{AG}(R)$ to be unicyclic, claw-free and outerplanar when $R=\mathrm{Z}_{n}$.

2 Some basic properties of $\mathrm{AG}(R)$

Note that $\tau(n)$ is the number of all positive divisors of n.
Lemma 2.1 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers, $R=Z_{n}$ where $n \neq p$ and p is a prime. Then the following are true in $\operatorname{AG}(R)$.
i. $\quad|V(\mathrm{AG}(R))|=\tau(n)-2$;
ii. $\quad|V(\mathrm{AG}(R))|=1$ if and only if $R=\mathrm{Z}_{p^{2}}$ where p is a prime;
iii. If $|V(\mathrm{AG}(R))| \geq 2$, then $\mathrm{AG}(R)$ has no isolated vertex.

Proof. Case (i). We know that the number of ideals in Z_{n} is equal to the number of all positive divisors of n. Note that $\{0\} \notin V(\mathrm{AG}(R))$ and $\operatorname{ann}(R)=\{0\}$. By the definition $A(R),|V(\mathrm{AG}(R))| \leq \tau(n)-2$. Let I be a non-trivial ideal in R. Then $I=\langle d\rangle$ where $d \mid n$ and $d \neq 1, d \neq n$.

Subcase 1. $d \neq \frac{n}{d}$.
Note that $d \mid n$ and $\left.\frac{n}{d} \right\rvert\, n$. Let $J=\left\langle\frac{n}{d}\right\rangle$. Since $n=d \cdot \frac{n}{d}, \frac{n}{d} \in \operatorname{ann}(I)$. Then $\operatorname{ann}(I) \neq\{0\}$ and so $I \in V(\mathrm{AG}(R))$. In this case, $|V(\mathrm{AG}(R))|=\tau(n)-2$.

International Journal of Computer Science
Scholarly Peer Reviewed Research Journal - PRESS - OPEN ACCESS

Volume 6, Issue 1, No 03, 2018
ISSN: 2348-6600
PAGE NO: 2267-2276
Department of Mathematics, DDE, Madurai Kamaraj University, India
January 8-10, 2018
International Conference on Algebra and Discrete Mathematics
(ICADM-2018) http://icadm2018.org

Sub case 2. $d=\frac{n}{d}$.
Here $n=d^{2}$. Then $\operatorname{ann}(I) \supseteq I$ and $I \in V(\mathrm{AG}(R))$. Thus, $|V(\mathrm{AG}(R))|=\tau(n)-2$.
Case (ii). Proof is trivial.
Case (iii). Let $I \in V(\mathrm{AG}(R))$. Then $I=\langle d\rangle$ where $d \mid n$ and $1 \neq d \neq n$.
Sub case 1. $d \neq \frac{n}{d}$.
Note that $d\left|n, \frac{n}{d}\right| n \quad$ and $\quad \frac{n}{d} \neq 1, \frac{n}{d} \neq n$. Let $\quad J=\left\langle\frac{n}{d}\right\rangle$. Then $J \in V(\mathrm{AG}(R))$. Since $\frac{n}{d} \in \operatorname{ann}(I), J \subseteq \operatorname{ann}(I)$. Similarly, $I \subseteq \operatorname{ann}(J)$. Thus, $I J=\{0\}$ and so I and J are adjacent in AG (R).

Sub case 2. $d=\frac{n}{d}$.
Note that $n=d^{2}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}, \alpha_{i^{\prime}} s$ are even and so $\alpha_{i} \geq 2$ for all $i, 1 \leq i \leq k$. Since $|V(\mathrm{AG}(R))| \geq 2$ and above case (ii), $n \neq p_{1}^{2}$. Let $J=\left\langle\frac{n}{p_{1}}\right\rangle$. Then $J \in V(\mathrm{AG}(R))$ and $I \neq J$. Also, $I \subseteq \operatorname{ann}(J)$ and $J \subseteq \operatorname{ann}(I)$. Thus, $I J=\{0\}$ and so I and J are adjacent in $\operatorname{AG}(R)$.

Lemma 2.2 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers, $R=\mathrm{Z}_{n}$ where $n \neq p$ and p is a prime. Let $|V(\mathrm{AG}(R))| \geq 2$. Then the following are true

$$
\text { in } \mathrm{AG}(R) \text {. }
$$

i. $\quad \mathrm{AG}(R)$ contains a vertex of degree one
ii. $\quad \mathrm{AG}(R)$ is neither Eulerian nor Hamiltonian.

Proof. (i). Since $|V(\mathrm{AG}(R))| \geq 2, R \neq \mathrm{Z}_{p^{2}}$ where p is a prime. Let $I=\left\langle p_{1}\right\rangle$ and $J=\left\langle\frac{n}{p_{1}}\right\rangle$ be two distinct vertices in $V(\mathrm{AG}(R))$. Then I is only adjacent to J in $\mathrm{AG}(R)$ and so $\operatorname{deg}_{\mathrm{AG}(R)}(I)=1$. (ii) Proof follows from above (i).

International Journal of Computer Science
Scholarly Peer Reviewed Research Journal - PRESS - OPEN ACCESS

In the following theorem, we charactarize when $\mathrm{AG}(R)$ is triangle.
Lemma 2.3 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers, $R=Z_{n}$ where $n \neq p$ and p is a prime. Then $\mathrm{AG}(R)$ contains a triangle if and only if n is any one of the following:
i. $n=p_{1}^{\alpha_{1}}\left(\alpha_{1} \geq 5\right)$
ii. $n=p_{1}^{2} p_{2}^{2}$
iii. $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}, \alpha_{i} \geq 3$ for some $1 \leq i \leq 2$
iv. $k \geq 3$.

Proof. (i) Let $S=\left\{\left\langle p_{1}^{\alpha_{1}-1}\right\rangle,\left\langle p_{1}^{\alpha_{1}-2}\right\rangle,\left\langle p_{1}^{\alpha_{1}-3}\right\rangle\right\} \subset V(\mathrm{AG}(R))$. Then $\langle S\rangle=K_{3}$ in $\mathrm{AG}(R)$.
(ii) Let $S=\left\{\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1}^{2} p_{2}\right\rangle,\left\langle p_{1} p_{2}^{2}\right\rangle\right\} \subset V(\mathrm{AG}(R))$. Then $\langle S\rangle=K_{3}$ in $\mathrm{AG}(R)$.
(iii) Without loss of generality, assume that $\alpha_{i}=\alpha_{1}$.

Let $S=\left\{\left\langle p_{1}^{\alpha_{1}-2} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1}^{\alpha_{1}}\right\rangle\right\} \subset V(\mathrm{AG}(R))$. Then $\langle S\rangle=K_{3}$ in $\mathrm{AG}(R)$.
(iv) Note that $S=\left\{\left\langle p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{4}^{\alpha_{4}} \cdots p_{k}^{\alpha_{k}}\right\rangle\right\} \subset V(\mathrm{AG}(R))$.

Then $\langle S\rangle=K_{3}$ in $\mathrm{AG}(R)$.
Conversely, it is enough to show that for the following cases:
(a) $n=p_{1}^{\alpha_{1}}\left(\alpha_{1} \leq 4\right)$; (b) $p_{1} p_{2}$; (c) either $p_{1}^{2} p_{2}$ or $p_{1} p_{2}^{2}$.

For (a), if $n=p^{2}$, then $\mathrm{AG}(R)=K_{1}$. If $n=p^{3}$, then $\mathrm{AG}(R)=K_{2}$. If $n=p^{4}$, then $\mathrm{AG}(R)=P_{3}$. For (b), if $n=p_{1} p_{2}$, then $\operatorname{AG}(R)=K_{2}$. For (c), if either $n=p_{1}^{2} p_{2}$ or $p_{1}^{2} p_{2}$, then $\operatorname{AG}(R)=P_{4}$.

Corollary 2.4 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers, $R=Z_{n}$ where $n \neq p$ and p is a prime. Then $\operatorname{AG}(R)$ contains a path if and only if n is any one of the following:
i. $n=p_{1}^{\alpha_{1}}\left(\alpha_{1} \leq 4\right)$

International Journal of Computer Science
Scholarly Peer Reviewed Research Journal - PRESS . OPEN ACCESS

Volume 6, Issue 1, No 03, 2018
ISSN: 2348-6600
PAGE NO: 2267-2276
Department of Mathematics, DDE, Madurai Kamaraj University, India
January 8-10, 2018
International Conference on Algebra and Discrete Mathematics
(ICADM-2018) http://icadm2018.org
ii. $n=p_{1} p_{2}$
iii. n is either $p_{1}^{2} p_{2}$ or $p_{1} p_{2}^{2}$.

Note that, a graph G is said to be unicyclic if G contains exactly one cycle. In the following theorem, we characterize when $\mathrm{AG}(R)$ is unicyclic.

Theorem 2.5 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers, $R=Z_{n}$ where $n \neq p$ and p is a prime. Then $\operatorname{AG}(R)$ is unicyclic if and only if either

$$
n=p_{1}^{5} \text { or } n=p_{1} p_{2} p_{3} .
$$

Proof. Assume that either $n=p_{1}^{5}$ or $n=p_{1} p_{2} p_{3}$. Proof follows from the embedding. Conversely, assume that $\mathrm{AG}(R)$ is unicyclic.

Case 1. $n=p_{1}^{\alpha_{1}}$. If $n=p_{1}^{\alpha_{1}}, \alpha_{1} \leq 4$, then, by Corollary 2.4, $\mathrm{AG}(R)$ is a path, a contradiction. Hence, $n=p_{1}^{\alpha_{1}}$ with $\alpha_{1} \geq 5$. For $n=p_{1}^{\alpha_{1}}, \alpha_{1} \geq 6$, consider the sets $S_{1}=\left\{\left\langle p^{\alpha_{1}-1}\right\rangle,\left\langle p^{\alpha_{1}-2}\right\rangle,\left\langle p^{\alpha_{1}-3}\right\rangle\right\}$ and $S_{2}=\left\{\left\langle p^{\alpha_{1}-1}\right\rangle,\left\langle p^{\alpha_{1}-2}\right\rangle,\left\langle p^{\alpha_{1}-4}\right\rangle\right\}$. Then $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=K_{3}$ in $\operatorname{AG}(R)$, a contradiction. Hence, in this case, $n=p_{1}^{5}$.

Case 2. $k=2$.
For any $n \in \mathrm{~N}$ with $k=2$, then n is any one of the following cases:
(a) $p_{1} p_{2}$; (b) either $p_{1}^{2} p_{2}$ or $p_{1} p_{2}^{2}$; (c) $p_{1}^{2} p_{2}^{2}$; (d) either $\alpha_{1} \geq 3$ or $\alpha_{2} \geq 3$.

For (a) and (b), $\mathrm{AG}(R)$ are path, a contradiction.
(c) Let $S_{1}=\left\{\left\langle p_{1} p_{2}\right\rangle,\left\langle p_{1}^{2}\right\rangle,\left\langle p_{2}^{2}\right\rangle\right\}$ and $S_{2}=\left\{\left\langle p_{1}^{2} p_{2}\right\rangle,\left\langle p_{1}^{2}\right\rangle,\left\langle p_{2}^{2}\right\rangle\right\}$.

Then $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=K_{3}$ in $\mathrm{AG}(R)$, a contradiction.
(d) Without loss of generality, assume that $\alpha_{1} \geq 3$. Let $S_{1}=\left\{\left\langle p_{1}^{\alpha_{1}-2} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1}\right\rangle\right\}$ and $S_{2}=\left\{\left\langle p_{1}^{\alpha_{1}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-2} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}\right\rangle\right\}$. Then $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=K_{3}$ in $\mathrm{AG}(R)$, a contradiction.

Case 3. $k=3$.

When $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$ and $\alpha_{i} \geq 2$ for some $i, 1 \leq i \leq 3$. Without loss of generality, assume that $\alpha_{i}=\alpha_{1}$. Let

$$
S_{1}=\left\{\left\langle p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{3}^{\alpha_{3}}\right\rangle\right\}
$$

and $S_{2}=\left\{\left\langle p_{1}^{\alpha_{1}} p_{3}^{\alpha_{3}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}\right\rangle\right\}$. Then $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=K_{3}$ in $\operatorname{AG}(R)$, a contradiction. Hence, in this case, $n=p_{1} p_{2} p_{3}$.

Case 4. $k \geq 4$.
Let $S_{1}=\left\{\left\langle\frac{n}{p_{1}}\right\rangle,\left\langle\frac{n}{p_{2}}\right\rangle,\left\langle\frac{n}{p_{3}}\right\rangle\right\}$ and $S_{2}=\left\{\left\langle\frac{n}{p_{1}}\right\rangle,\left\langle\frac{n}{p_{2}}\right\rangle,\left\langle\frac{n}{p_{4}}\right\rangle\right\}$. Then $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=K_{3}$ in $\mathrm{AG}(R)$, a contradiction.

Note that, a graph G is a claw-free if G does not have the claw $K_{1,3}$ as the induced subgraph. In the following theorem, we characterize when $\mathrm{AG}(R)$ is a claw-free graph.

Theorem 2.6 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers, $R=Z_{n}$ where $n \neq p$ and p is a prime. Then $\operatorname{AG}(R)$ is a claw-free graph if and only if n is any one of the following:
i. $\quad n=p_{1}^{\alpha_{1}}$ and $\alpha_{1} \leq 5$;
ii. $\quad n$ is either $p_{1} p_{2}$ or $p_{1}^{2} p_{2}$ or $p_{1} p_{2}^{2}$ or $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ with $\alpha_{i} \geq 3$ for some i;
iii. $n=p_{1} p_{2} p_{3}$.

Proof. Proofs of (i), (ii) and (iii) are trivial.Conversely assume that $\mathrm{AG}(R)$ is a claw-free graph. It is enough to show that for the following cases, $\mathrm{AG}(R)$ is not a claw-free graph.
(a) $n=p_{1}^{\alpha_{1}}$ where $\alpha_{1} \geq 6$; (b) $n=p_{1}^{2} p_{2}^{2}$; (c) $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ where $\alpha_{i} \geq 3$ for some i;
(d) $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{a_{3}}$ where $\alpha_{i} \geq 2$ for some i; (e) $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{a_{k}}$ where $k \geq 4$.
(a) Let $S=\left\{p_{1}, p_{1}^{2}, p_{1}^{3}, p_{1}^{\alpha_{1}-1}\right\}$. Then $\langle S\rangle=K_{1,3}$ in $\operatorname{AG}(R)$.
(b) Let $S=\left\{\left\langle p_{1}\right\rangle,\left\langle p_{1}^{2}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{1}^{2} p_{2}\right\rangle\right\}$. Then $\langle S\rangle=K_{1,3}$ in $\operatorname{AG}(R)$.
http://www.ijcsjournal.com Volume 6, Issue 1, No 03, 2018

ISSN: 2348-6600 Reference ID: IJCS-340

PAGE NO: 2267-2276
Department of Mathematics, DDE, Madurai Kamaraj University, India
January 8-10, 2018
International Conference on Algebra and Discrete Mathematics
(ICADM-2018) http://icadm2018.org
(c) Without loss of generality, assume that $\alpha_{1} \geq 3$. Let $S=\left\{p_{1}, p_{1}^{2}, p_{1}^{3}, p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}\right\}$. Then $\langle S\rangle=K_{1,3}$ in $\mathrm{AG}(R)$.
(d) Without loss of generality, assume that $\alpha_{1} \geq 2$. Let $S=\left\{\left\langle p_{1}\right\rangle,\left\langle p_{2}\right\rangle,\left\langle p_{3}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right\rangle\right\}$. Then $\langle S\rangle=K_{1,3}$ in $\operatorname{AG}(R)$.
(e) Let $\left.S=\left\{p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{5}^{a_{5}} \ldots p_{k}^{\alpha_{k}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{3}^{\alpha_{3}} p_{5}^{a_{5}} \ldots p_{k}^{\alpha_{k}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{4}^{\alpha_{4}} p_{5}^{a_{5}} \ldots p_{k}^{\alpha_{k}}\right\rangle\right\}$. Then $\langle S\rangle=K_{1,3}$ in $\mathrm{AG}(R)$.

Converse part is trivial.

$\mathbb{A} \mathbb{G}(R)$ of $\mathbb{Z}_{p \mathbb{I}}$

Theorem 2.7 Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers, $R=Z_{n}$ where $n \neq p$ and p is a prime. Then $\operatorname{AG}(R)$ is outerplanar if and only if n is any one of the following:

- $n=p_{1}^{\alpha_{1}}$ where $\alpha_{1} \leq 6$
- $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ where $\alpha_{1} \leq 2$ and $\alpha_{2} \leq 2$
- $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ with either $\alpha_{1}=3$ and $\alpha_{2}=1$ or $\alpha_{1}=1$ and $\alpha_{2}=3$
- $n=p_{1} p_{2} p_{3}$.

Proof. Assume that $\mathrm{AG}(R)$ is outerplanar.
Case 1. Suppose $n=p_{1}^{\alpha_{1}}$ where $\alpha_{1} \geq 7$.

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and

Volume 6, Issue 1, No 03, 2018
ISSN: 2348-6600
PAGE NO: 2267-2276
Department of Mathematics, DDE, Madurai Kamaraj University, India
January 8-10, 2018
International Conference on Algebra and Discrete Mathematics
(ICADM-2018) http://icadm2018.org

Note that $p_{1}^{\alpha_{1}-3} \cdot p_{1}^{\alpha_{1}-4} \geq p_{1}^{\alpha_{1}}$. Let $S=\left\{\left\langle p_{1}^{\alpha_{1}-1}\right\rangle,\left\langle p_{1}^{\alpha_{1}-2}\right\rangle,\left\langle p_{1}^{\alpha_{1}-3}\right\rangle,\left\langle p_{1}^{\alpha_{1}-4}\right\rangle\right\}$. Then $\langle S\rangle=K_{4}$ in $\mathrm{AG}(R)$, a contradiction.

Case 2. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ with either $\alpha_{1}=3$ and $\alpha_{2} \geq 2$ or $\alpha_{1} \geq 2$ and $\alpha_{2}=3$;
Without loss of generality assume that $\alpha_{1}=3$ and $\alpha_{2} \geq 2$.
Let $S=\left\{p_{1}, p_{1}^{2} p_{2}^{\alpha_{2}}, p_{1}^{3}, p_{2}^{\alpha_{2}}, p_{1} p_{2}^{\alpha_{2}}\right\}$. Then $\langle S\rangle=K_{2,3}$ in $\mathrm{AG}(R)$, a contradiction.
Case 3. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ where $\alpha_{i} \geq 4$ for some i.
Without loss of generality assume that $\alpha_{1} \geq 4$. Let $S=\left\{p_{1}^{\alpha_{1}-1}, p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}, p_{1}^{\alpha_{1}-2} p_{2}^{\alpha_{2}}, p_{1}^{\alpha_{1}-3} p_{2}^{\alpha_{2}}\right\}$. Then $\langle S\rangle=K_{4}$ in $\mathrm{AG}(R)$, a contradiction.

Case 4. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$ with $\alpha_{i} \geq 2$ for some $1 \leq i \leq 3$;
Without loss of generality assume that $\alpha_{1} \geq 2$. Let $S=\left\{\left\langle p_{1}^{\alpha_{1}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\right\rangle,\left\langle p_{1}^{\alpha_{1}} p_{3}^{\alpha_{3}}\right\rangle,\left\langle p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right\rangle,\left\langle p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right\rangle\right\}$. Then $\langle S\rangle$ contains a $K_{2,3}$ as a subgraph in $\mathrm{AG}(R)$, a contradiction.

Case 5. Suppose $k \geq 4$.
Let $S=\left\{\left\langle\frac{n}{p_{1}}\right\rangle,\left\langle\frac{n}{p_{2}}\right\rangle,\left\langle\frac{n}{p_{3}}\right\rangle,\left\langle\frac{n}{p_{4}}\right\rangle\right\}$. Then $\langle S\rangle=K_{4}$ in $\mathrm{AG}(R)$, a contradiction.

$\mathbf{A G}(R) \circ f \mathbb{Z}_{\mathcal{P}_{1}^{6}}$

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and
Department of Mathematics, DDE, Madurai Kamaraj University, India
Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

Department of Mathematics, DDE, Madurai Kamaraj University, India
January 8-10, 2018
International Conference on Algebra and Discrete Mathematics
(ICADM-2018) http://icadm2018.org

References

[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447 (doi: 10.1006/jabr.1998.7840).
[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, (1969).
[3] M. Axtell, N. Baeth and J. Stickles, Cut vertices in zero-divisor graph of finite commutative rings, Comm. Algebra, 39 (2011),2179-2188 (doi:10.1080/00927872.2010.488681)
[4] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings, I J. Algebra Appl., 10 (4) (2011), 727-739 (doi: 10.1142/S0219498811004896).
[5] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl., 10 (4) (2011), 741-753 (doi: 10.1142/S0219498811004902).
[6] G. Chartrand and L. Lesniak, Graphs and Digraphs Wadsworth and Brooks/ Cole, Monterey, CA, (1986).
[7] B. Cote, C. Ewing, M. Huhn, C. M. Plaut and D. Weber, Cut sets in zero-divisor graphs of finite commutative rings, Comm. Algebra, 39 (2011),2849-2861 (doi:10.1080/00927872.2010.489534).
[8] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press Chicago(1974)
[9] S. P. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra, 34 (2006), 2389-2401 (doi:10.1080/00927870600649103).

[10] T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput. 88 (2014), 277-288.
[11] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam,(1973).

[^0]: All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and
 Department of Mathematics, DDE, Madurai Kamaraj University, India
 Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/

