

Scholarly Peer Reviewed Research Journal - PRESS - OPEN ACCESS

ISSN: 2348-6600

Volume 6, Issue 1, No 04, 2018

ISSN: 2348 PAGE NO: 2293-2300

Department of Mathematics, DDE, Madurai Kamaraj University, India

International Conference on Algebra and Discrete Mathematics http://icadm2018.org

January 8-10, 2018 (ICADM-2018) icadm2018@gmail.com

POLYNOMIALS ON SP-RING

K. Shanmuga Priya¹ and M. Mullai²

¹ Research Scholar, premsathya79@gmail.com ² Assistant Professor, mullaim@alagappauniversity.ac.in

Abstract

Algebra acts as one of the building block for mathematics today. In this paper, the concept of Polynomials on SP-Ring has been introduced. The definition of SP-Polynomial, degree of SP-polynomial, primitive SP-Polynomial, irreducible SP-Polynomial, content of SP-Polynomial, some theorems, Gauss lemma and the Eisenstein Criterion are also defined and established.

Keywords: SP-Polynomial, Primitive, Content, Gauss lemma, Eisenstein criterion... Subject Classification: 2010 Mathematics Subject Classication: 08A30, 08A35, 08A40.

1 Introduction

In 1978, K.Iseki and S.Tanaka introduced the concept of BCK-Algebra[2]. K.Iseki introduced BCI-Algebra[1] in 1980. M.Mullai and K.Shanmuga priya introduced a new notion of algebra known as SP-Algebra[4], which is a subclass of BH-Algebra[3]. Further that paper was extended to SP-Ring[5] by them. In this paper, SP-Ring concept is applied to 'polynomials formed from SP-Ring. This paper display definitions, theorems related to SP-polynomials and also provide SP-Ring over unique factorization domain, Gauss lemma and Eisenstein Criterion are also established.

2 preliminaries

Definition 2.1 An Algebra(X, *, e) of type (2,0) is said to be Semi SP-Algebra if

- *1.* x * x = e.
- 2. x * e = x.
- 3. if x * y = e and y * x = e, then x = y, where * is a binary operation and e is any constant.

Definition 2.2 [5] A non-empty set X together with two binary operations '*' and ' Δ ', is called SP-Ring, if it satisfies the following axioms:

- 1. (X, *) is a Semi SP-Algebra.
- 2. Δ ' is associative on X.
- 3. $a\Delta(b \ast c) = (a\Delta b) \ast (a\Delta c)$.

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

Page 2293

4. $(a*b)\Delta c = (a\Delta c)*(b\Delta c), \forall a, b, c \in X.$

Definition 2.3 [5] A SP-Ring $(X, *, \Delta)$ is called integral domain if it has a constant e' and the set of all elements satisfying $x \Delta x = e'$ is a semi SP-Algebra under Δ .

Definition 2.4 [5] Let $(X, *, \Delta)$ be an abelian SP-Ring and $a, b \in X$, a = 0. Then a divides b [write a/b], if there exists an element $c \in X$ such that $b = a \Delta c$.

Definition 2.5 [5] In an Euclidean domain $(X, *, \Delta)$, an element $a \in X$ is said to be prime if 'a' cannot be expressed as $a = b \Delta c$, where $b, c = e' \in X$, and e' is constant in X corresponding to Δ . 2.1 SP-POLYNOMIAL

Definition 2.6 A non-empty subset S of a SP-Ring $(R, *, \Delta)$ is called a SP-Subring if S itself is a SP-Ring under the same operation as in R.

Example 2.7 $(2Z^+ \cup \{0\}, \Theta, .)$ is a SP-Subring of $(Z^+ \cup \{0\}, \Theta, .)$

Definition 2.8 Let *R* be a SP-Ring. A polynomial f(x) with coefficient in *R* is defined to be an expression of the form $a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, where *n* is a positive integer and $a_0, a_1, ..., a_n \in R$. a_r is called the coefficient of x^r . $a_r x^r$ is called a term of the polynomial. This f(x) can be called as SP-Polynomial.

The set of all polynomials with co-efficient in R is denoted by R[x].

Definition 2.9 Let $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, $a_n \neq 0$ be a non-zero polynomial in R[x]. Then the degree of f(x) written as deg f(x) is n and a_n is called the leading coefficient of f(x).

Result 2.10 Every SP-Ring $(R, *, \Delta)$ is closed under addition

Definition 2.11 If $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ and $q(x) = b_0 + b_1x + b_2x^2 + \dots + b_mx^m$ are both in R[x], then $p(x) * q(x) = c_0 + c_1x + c_2x^2 + \dots + c_tx^t$, where for each $i, c_i = (a_i * b_i)$, each $c_i \in R$. Therefore $p(x) * q(x) \in R[x]$.

Definition 2.12 If $f(x) = a_0 + a_1x + a_2x^2 + ... + a_mx^m$, and $g(x) = b_0 + b_1x + b_2x^2 + ... + b_nx^n$ in R[x], then $f(x) \Delta g(x) = c_0 + c_1x + c_2x^2 + ... + c_kx^k$, where $c_r = a_rb_0 + a_{r-1}b_1 + ... + a_0b_r \in R$. Therefore $f(x) \Delta g(x) \in R[x]$.

Theorem 2.13 Let R be any SP-Ring. Then R[x] with * and Δ defined above is also SP-Ring. Proof: Let f(x) and $g(x) \in R[x]$

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

International	I Journal of Computer S Scholarly Peer Reviewed Research Journal - PRESS - ISSN: 2348-6600	
http://www.ijcsjournal.com Reference ID: IJCS-343	Volume 6, Issue 1, No 04, 2018	ISSN: 2348-6600 PAGE NO: 2293-2300
Department of Mathematics, DDE, International Conference on Algebra a http://icadm2018.org <i>Clearly f(x) * g(x) and f(x) $\Delta g(x) \in \mathbb{R}$</i> <i>Let 0 $\in \mathbb{R}[x]$ is a constant element wit</i> <i>Clearly f(x) * f(x) = 0 and f(x) * 0 = f(x)</i> <i>If f(x) * g(x) = 0 and g(x) * f(x) = 0</i> <i>To prove f(x) = g(x)</i> <i>Let f(x) = a₀ + a₁x + a₂x² ++a_nxⁿ, f(x) = g(x)</i> <i>Let f(x) = a₀ + b₁x + b₂x² ++b_nx^m, b_m</i> <i>Then f(x) * g(x) = c₀ + c₁x + c₂x² ++r, x^t</i> ,	[x] h respect to * (x) $a_n \neq 0,$ $\neq 0,$ $\neq 0,$ $+c_t x^t$, where each $c_i = (a_i - b_i)$	January 8-10, 2018 (ICADM-2018) icadm2018@gmail.com
$g(x) + f(x) = r_0 + r_1 x + r_2 x + \dots + r_t x,$ Since $f(x) * g(x) = 0 = g(x) * f(x)$ $\Rightarrow f(x) * g(x) = g(x) * f(x)$ Therefore $c_0 + c_1 x + c_2 x^2 + \dots + c_t x^t =$ By definition each $c_i = r_i$ Therefore $a_i * b_i = b_i * a_i$ $\Rightarrow 2a_i * 2b_i = 0, \text{ since } x * x = e$ $\Rightarrow 2(a_i * b_i) = 0$ $\Rightarrow a_i = b_i, \text{ Since } x * y = 0, \text{ then } x = y$ $\Rightarrow f(x) = g(x)$ Hence $R[x]$ is a SP-Algebra under * a Since associative and distributive are	$r_0 + r_1 x + r_2 x^2 + \dots + r_t x^t$ <i>nd</i> Δ	
$(R[x], *, \Delta)$ is a SP-Ring.		
under Δ Since R is integral domain, $e' \in R$ Clearly $e' \in R[x]$ and $f(x) \Delta e' = f(x)$ $S = f(x)/f(x) \Delta f(x) = e'$ such that $f(x)$	n nd the set of all elements satisfying $f(x)$	$\Delta f(x) = e'$ is a SP-Algebra
All Rights Reserved ©2018 International Jour Department of Mathematics, DDE, M		

Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

IJCS International	Scholarly Peer Reviewed Research Journal - PRESS - ISSN: 2348-6600	
http://www.ijcsjournal.com Reference ID: IJCS-343	Volume 6, Issue 1, No 04, 2018	ISSN: 2348-6600 PAGE NO: 2293-2300
Keierenee 117. 19 e.5-545		TAGE NO. 2255-2500
Department of Mathematics, DDE,	Madurai Kamaraj University, India	January 8-10, 2018
International Conference on Algebra a		(ICADM-2018)
http://icadm2018.org		icadm2018@gmail.com
Since $f(x) \Delta f(x) = e'$, $f(x) \Delta g(x) = e'$, $f(x) \Delta g(x) = f(x) \Delta f(x)$, $g(x) \Delta f(x) = f(x) \Delta g(x) = f(x) \Delta f(x)$ $\Rightarrow f(x) \Delta g(x) = f(x) \Delta f(x)$ $\Rightarrow f(x) \Delta (g(x)) \Delta g(x) = (g(x) \Delta g(x))$ $\Rightarrow f(x) \Delta (g(x) \Delta g(x)) = g(x) \Delta (g(x) \Delta g(x))$ $\Rightarrow f(x) \Delta e' = g(x) \Delta e'$ $\Rightarrow f(x) = g(x)$ Therefore $R[x]$ is SP-Algebra under Δ Therefore $R[x]$ is an integral domain Conversly R[x] is an integral domain To prove that R is integral domain Since R is a SP-Subring of $R[x]$ and e	$\Delta g(x)$ $\Delta g(x))$ 1	

By definition, R is an Integral domain. 2.2 SP-POLYNOMIAL OVER UNIQUE FACTORIZATION DOMAIN

Definition 2.15 Let *R* be a Unique facorization domain. Let $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, $a_n \neq 0$ in R[x]. f(x) is said to be primitive if the g.c.d of the co-efficient of f(x) is constant $e' \in R$.

Definition 2.16 The g.c.d of a_0, a_1, \dots, a_n is called the content of f(x) and is denoted by c(f).

Theorem 2.17 Let R be a Unique factorization domain.Let $f(x) \in R[x]$ be a non-constant polynomial. Then f(x) can be written as $f(x) = c \Delta f_1(x)$ where c = c(f) and $f_1(x) \in R[x]$ is primitive.

Proof: Given R be a unique factorization domain Let $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n, a_n \neq 0$ in R[x]Let c be the g.c.d of co-efficients of $a_0, a_1, ..., a_n$ Therefore c/a_i , for all i $\Rightarrow a_i = c \Delta b_i$, where $b_i \in R$

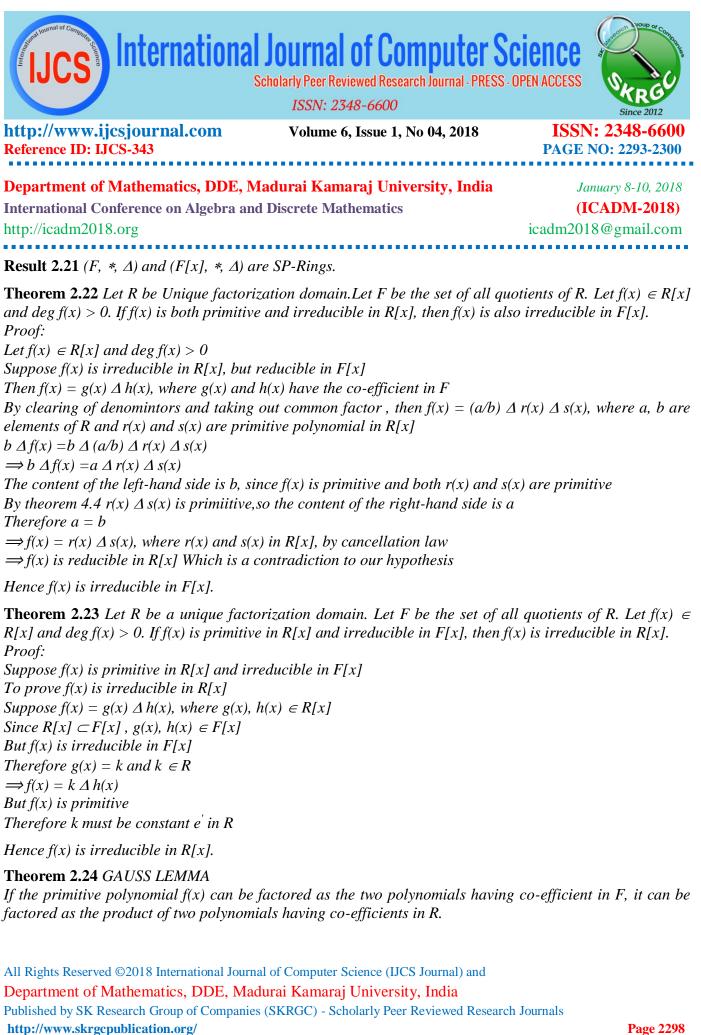
$$Hencef(x) = (c\Delta b_0) + (c\Delta b_1)x + \dots + (c\Delta b_n)x^n$$
(1)
= $c\Delta (b_0 + b_1x + \dots + b_nx^n)$

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

s s	Journal of Computer So Scholarly Peer Reviewed Research Journal - PRESS - O <i>ISSN: 2348-6600</i>	OPEN ACCESS
http://www.ijcsjournal.com Reference ID: IJCS-343	Volume 6, Issue 1, No 04, 2018	ISSN: 2348-6600 PAGE NO: 2293-2300
Department of Mathematics, DDE, M International Conference on Algebra and http://icadm2018.org		January 8-10, 2018 (ICADM-2018) icadm2018@gmail.com
Since the g.c.d of $a_0, a_1, \dots a_n$ is c, the g.c.	1	<i>x)</i>
$\begin{split} R[x] \text{ is again a primitive polynomial in .} \\ Proof: \\ Given R \text{ is an Unique factorization dom} \\ Let f(x) &= a_0 + a_1 x + a_2 x^2 + + a_n x^n, a_n \\ g(x) &= b_0 + b_1 x + b_2 x^2 + + b_m x^m, b_m \neq 0 \\ Let p \text{ be a prime element in R} \\ Since f(x) \text{ and } g(x) \text{ are primitive polynomial} \\ 1,2,m \\ Let a_r \text{ be the first co-efficient of } f(x) \text{ not} \\ Therefore p/a_0, p/a_1,p/a_{r-1}, p \text{ does not} \\ Similarly b_s \text{ is the first co-efficient of } g(x) \\ p/b_0, p/b_1,p/b_{s-1}, p \text{ does not divide } b_s \\ The co-efficient of x^{r+s} \text{ in } f(x) \Delta g(x) \text{ is generative } \\ P \text{ divides } (a_0 \Delta b_{r+s} + + a_{r-1} \Delta b_{s+1}) p \\ divide a_r \Delta b_s \\ \implies p \text{ does not divide } c_{r+s} \\ \end{split}$	rization domain. Then the product of two R[x]. ain $a \neq 0$ 0 in R[x] pomials p does not divide all a_i 's and b_j divisible by p t divide a_r (x) not divisible by p given by $c_{r+s} = (a_0 \Delta b_{r+s} + a_1 \Delta b_{r+s-1} + b_0)$ p divides $(a_{r+1} \Delta b_s) + (a_{r+1} \Delta b_{s-1} + + b_0)$'s, where $i = 1, 2,, j =$ $\dots + a_{r-1} \Delta b_{s+1} + (a_r \Delta b_s)$ $= a_{r+s} \Delta b_0 \text{ and } p \text{ does not}$
Therefore for any prime element p in R Hence $f(x) \Delta g(x)$ is primitive.	there exist some co-efficient of $f(x) \Delta g(x)$	τ) ποι αινίαε by p
Definition 2.19 <i>Let</i> R <i>be a SP-Ring. Let be irreducible if</i> $f(x)$ <i>cannot be factored</i>		in R[x]. Then f(x) is said to
Definition 2.20 Let <i>R</i> be a SP-Ring. Let $\neq 0$. <i>F</i> [<i>x</i>] be the set of all polynomial of integer and $a_0, a_1, \dots, a_n \in R$.	t F be the set of all elements of the form of the form $(a_0/b_0) + (a_1/b_1)x + \dots + (a_n/b_n)$	

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

Page 2297



Page 2298



All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

Page 2299

IJCS Internation	al Journal of Computer S Scholarly Peer Reviewed Research Journal - PRESS - <i>ISSN: 2348-6600</i>	
http://www.ijcsjournal.com Reference ID: IJCS-343	Volume 6, Issue 1, No 04, 2018	ISSN: 2348-6600 PAGE NO: 2293-2300
Department of Mathematics, DDE, International Conference on Algebra a http://icadm2018.org	, <mark>Madurai Kamaraj University, India</mark> and Discrete Mathematics	<i>January</i> 8-10, 2018 (ICADM-2018) icadm2018@gmail.com
$a_{m} = b_{0} \Delta c_{m} + b_{1} \Delta c_{m-1} + \dots + b_{m-i} \Delta c_{m}$ Now p does not divide $b_{0} \Delta c_{m}$ and p divides $(b_{1} \Delta c_{m} + \dots + b_{m-i} \Delta c_{i})$ p does not divide a_{m} But p divides a_{m} since $m < n$, by our p Which is a contradiction Therefore $f(x)$ is irreducible in $R[x]$ By theorem 4.5)	

References

[1] Iseki. K, An On BCI-Algebra, Math Seminar Notes, 8(1980), 125-130.

[2] Iseki. T and Tanaka. S, An Introduction to the BCK-Algebra , Math Japonica 23(1978).

[3] T. B. Jun, E. H Roh and H.S. Kim, On BH-Algebra, Scietiae Mathematicae 1, No.3(1998), 347-354.

[4] Mulai. M and Shanmuga Priya. K, A Note On SP-Algebra, International Conference On Mathematical Modelling and Computational Methods in Science and Engineering Feb-2017.

[5] K. Shanmuga Priya and M. Mullai, SP-Ring and its Properties, International

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/