

ISSN: 2348-6600

http://www.ijcsjournal.com **Reference ID: IJCS-344**

Volume 6, Issue 1, No 04, 2018

PAGE NO: 2301-2303

icadm2018@gmail.com

January 8-10, 2018

(ICADM-2018)

Department of Mathematics, DDE, Madurai Kamaraj University, India

International Conference on Algebra and Discrete Mathematics http://icadm2018.org

k-Distance Signed Total Domination Number of Graphs

R. Padmavathi

Department of Mathematics, Sri Meenakshi Government Arts College for Women Madurai 625002, India

and

S. Chandra Kumar

Department of Mathematics, Scott Christian college

Nagercoil 629003, India

padmavathi.r2007@gmail.com and kumar.chandra82@yahoo.in

Abstract

Let G be a finite and simple graph with the vertex set V=V(G) of order n and edge set E=E(G). If v is a vertex of a graph G, the open k-neighborhood of v, denoted by $N_{\mu}(v)$

. A function $f:V(G) \rightarrow \{-1,+1\}$ is a k-distance non-negative signed total dominating function (k-DNNSTDF) of a graph G, if for every vertex $v \in V$, $\sum f(u) \ge 0$. The k-distance non-negative signed total domination number $f(N_i(v)) =$ $u \in N_{\mu}(v)$

(k-DNNSTDN) of a graph G equals the minimum weight of a k-DNNSTDF of G, denoted by $\gamma_{k,st}^{NN}(G)$. We study some properties of k-DNNSTDN in graphs and some families of graphs such as cycles, paths, complete graphs, star graphs and wheel graphs which admit 2-DNNSTDF.

Keywords: signed total dominating function, k-distance non-negative signed total dominating function.

1 Introduction

Let G be a finite and simple graph with the vertex set V=V(G) of order n and edge set E=E(G). If v is a vertex of a graph G, the open k-neighborhood of v, denoted by $N_k(v)$. $\delta_k(G) = min\{|N_k(v)|; v \in V\}$ and

$\Delta_k(G) = max\{|N_k(v)|; v \in V\}.$

In 1995, J.E.Dunbar et al. defined signed dominating function. A function $f:V \rightarrow \{-1,+1\}$ is a signed dominating function of G, if for every vertex $v \in V$, $f(N[v]) \ge 1$. The signed domination number, denoted by $\gamma_{c}(G)$, is the minimum weight of a signed dominating function on G JED.

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

Department of Mathematics, DDE, Madurai Kamaraj University, India January 8-10, 2018 **International Conference on Algebra and Discrete Mathematics** (ICADM-2018) icadm2018@gmail.com

http://icadm2018.org

In 2001, Bohdan zelinka and Liberec introduced the concept of signed total domination function. A is a signed total dominating function of G, if for every vertex $v \in V$, function $f: V \rightarrow \{-1, +1\}$ $f(N(v)) \ge 1$. The signed total domination number, denoted by $\gamma_{et}(G)$, is the minimum weight of a signed total dominating function on G BOH01.

In 2013 ZhongshengHuang, Zhongsheng Huang et al. introduced the concept of on non-negative signed domination in graphs. A function $f: V \rightarrow \{-1, +1\}$ is a non-negative signed dominating function of *G*, if for every vertex $v \in V$, $f(N[v]) \ge 1$. The non-negative signed domination number, denoted by $\gamma_s^{NN}(G)$, is the minimum weight of a non-negative signed dominating function on G.

In this paper, we introduced the concept of k-distance non-negative signed total dominating function. A is a k-distance non-negative signed total dominating function (kfunction $f:V(G) \rightarrow \{-1,+1\}$ DNNSTDF) of a graph G, if for every vertex $v \in V$, $f(N_k(v)) = \sum f(u) \ge 0$. The k-distance non-negative $u \in N_{\iota}(v)$

signed total domination number (k-DNNSTDN) of a graph G equals the minimum weight of a k-DNNSTDF of G, denoted by $\gamma_{k,st}^{NN}(G)$. We study some properties of k-DNNSTDN in graphs and some families of graphs such as cycles, paths, complete graphs, star graphs and wheel graphs which admit 2-DNNSTDF.

2 Main results

In this section, we obtain some properties of *k*-DNNSTDN in graphs.

Theorem 1 Let G be a graph of order n. If $\gamma_{k,st}^{NN}(G) = n$, then $G \approx \overline{K_n}$.

Theorem 2 For any graph G with maximum degree Δ and minimum degree δ , we have

 $\gamma_{st}^{NN}(G) \geq \frac{\delta - \Delta}{\Delta + \delta} n.$

Theorem 3 Let $n \ge 3$ be an integer. Then the cycle C_n admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(C_n) \le 0$ when n is even and $\gamma_{2,st}^{NN}(C_n) \leq 1$ when n is odd.

Lemma 1 Let $n \ge 3$ be an odd integer. Then the path P_n admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(P_n) \le 1$.

Lemma 2 Let $n \ge 4$ be an even integer. Then the graph P_n admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(P_n) \le 2$. Form Lemma and Lemma, we can have the following theorem.

All Rights Reserved ©2018 International Journal of Computer Science (IJCS Journal) and Department of Mathematics, DDE, Madurai Kamaraj University, India Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals http://www.skrgcpublication.org/

Department of Mathematics, DDE, Madurai Kamaraj University, India International Conference on Algebra and Discrete Mathematics http://icadm2018.org

January 8-10, 2018 (ICADM-2018) icadm2018@gmail.com

Theorem 4 Let $n \ge 3$ be an integer. Then the path P_n admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(P_n) \le 1$ when n is odd and $\gamma_{2,st}^{NN}(P_n) \le 2$ when n is even.

Lemma 3 Let G be a connected graph of order n. Then $\gamma_{2,st}^{NN}(G) = n-2$ if and only if $G \approx P_3$ or C_3 .

Theorem 5 The complete graph K_n $(n \ge 3)$ admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(K_n) \le 1$ when n is odd and $\gamma_{2,st}^{NN}(K_n) \le 2$ when n is even.

Lemma 4 The star graph $K_{1,n}$ admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(K_{1,n}) \leq 1$ when n is even and $\gamma_{2,st}^{NN}(K_{1,n}) \leq 2$ when is n odd.

Theorem 6 Let $n \ge 3$ be an integer. Then the wheel graph W_n admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(W_n) \le 1$ when n is even and $\gamma_{2,st}^{NN}(W_n) \le 2$ when is n odd.

Theorem 7 The friendship graph T_n admit 2-DNNSTDF.

Theorem 8 For $n \ge 3$ be an integer. Then the helm graph H_n admits 2-DNNSTDF with $\gamma_{2,st}^{NN}(H_n) \le 1$.

References

- 1. Bohdan Zelinka and Liberec, Signed total domination number of a graph, Czechoslovak Mathematical Journal, 51 (126) (2001), 225-229.
- 2. J.E. Dunbar, S.T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs. In: Graph Theory, Combinatorics and Applications. Proc. 7th Internat. conf. Combinatorics, Graph Theory, Applications, (Y. Alavi, A. J. Schwenk, eds.). John Wiley & Sons, Inc., 1 (1995) 311-322.
- 3. Zhongsheng Huang, Wensheng Li, Zhifang Feng and Huaming Xing, On Nonnegative Signed Domination in Graphs and its Algorithmic Complexity, Journal of networks, Vol. No. 2, February 2013.