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Abstract

The Jump graph J(G) of a graph G is the graph whose vertices

are edges of G and two vertices of J(G) are adjacent if and only if

they are not adjacent in G. Equivalently complement of line graph

L(G) is the Jump graph J(G) of G. In this paper, we give necessary

and sufficient condition for the decomposition of Jump graph of paths

into various graphs such as paths, cycles, stars, complete graphs and

complete bipartite graphs.
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1 Introduction

Let G = (V,E) be a simple undirected graph without loops or multiple edges.

A path on n vertices is denoted by Pn, cycle on n vertices is denoted by Cn

and complete graph on n vertices is denoted by Kn. The neighbourhood of

a vertex v in G is the set N(v) consisting of all vertices that are adjacent

to v. |N(v)| is called the degree of v and is denoted by d(v). A complete

bipartite graph with partite sets V1 and V2, where |V1| = r and |V2| = s,

is denoted by Kr,s. The graph K1,r is called a star and is denoted by Sr.

Claw is a star with three edges. For any set S of points of G, induced subgraph

< S > is the maximal subgraph of G with point set S. The terms not defined

here are used in the sense of [2].
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A decomposition of a graph G is a family of edge-disjoint subgraphs

{G1, G2, . . . , Gk} such that E(G) = E(G1)∪E(G2)∪ . . .∪E(Gk). If each Gi

is isomorphic to H for some subgraph H of G, then the decomposition is

called a H-decomposition of G.

The Jump graph J(G) of a graph G is the graph whose vertices are

edges of G and two vertices of J(G) are adjacent if and only if they are not

adjacent in G . This concept was introduced by Chartrand in [1]. Let J(Pn)

denote the Jump graph of paths. Then J(Pn) is a connected graph if and only

if n ≥ 5. Let us consider the connected jump graph of paths. Let the edges

of path Pn be labelled as x1, x2, . . . , xn−1. Then the vertices of J(Pn) be

labelled as x1, x2, . . . , xn−1. Since the number of edges of path Pn is (n−1),

the number of vertices of J(Pn) is (n − 1). The number of edges of Jump

graph of paths J(Pn) is
(
n−2
2

)
.

In 2010, Tay - Woei Shyu [6] gave necessary and sufficient condition for

the decomposition of complete graph into P4 ’s and S4 ’s. In this paper, we

give necessary and sufficient condition for the decomposition of Jump graph

of paths into various graphs such as paths, cycles, stars, complete graphs and

complete bipartite graphs.

Theorem 1.1. Let n be an odd positive integer with p = n−3
2

and

q = (n−5)(n−3)
8

. There exists a decomposition of J(Pn) into p copies of P4

and q copies of C4 iff n ≥ 5 and 3p+ 4q =
(
n−2
2

)
.

Proof. (Necessity) Let n be an odd positive integer. Suppose that there exists

a decomposition of J(Pn) into p copies of P4 and q copies of C4 where

p = n−3
2

and q = (n−5)(n−3)
8

. Clearly Jump graph of path J(Pn) is a connected

graph if and only if n ≥ 5. Since n is odd, n ≥ 5. Since |E[J(Pn)]| =
(
n−2
2

)
,

we have 3p+ 4q =
(
n−2
2

)
.

(Sufficiency) Suppose 3p + 4q =
(
n−2
2

)
where p = n−3

2
and q = (n−5)(n−3)

8
.

Clearly x2k−3x2k−5x2k−2x2k−4; 3 ≤ k ≤ n+1
2

forms P4 in J(Pn). Then we get

(n+1
2
−2) copies of P4. Thus p = n−3

2
. Also

{
x1x2k−3x2x2k−2x1/4 ≤ k ≤ n+1

2

}

∪
{
x3x2k−3x4x2k−2x3/5 ≤ k ≤ n+1

2

}
∪

{
x5x2k−3x6x2k−2x5/6 ≤ k ≤ n+1

2

}

∪ . . . ∪
{
xn−6x2k−3xn−5x2k−2xn−6/k = n+1

2

}
forms C4 in J(Pn). Then

we get (n−5)(n−3)
8

copies of C4. Therefore q = (n−5)(n−3)
8

. Thus

E[J(Pn)] = E(P4) ∪ . . . ∪ E(P4)
︸ ︷︷ ︸

p times

∪E(C4) ∪ . . . ∪ E(C4)
︸ ︷︷ ︸

q times

where p = n−3
2

and

q = (n−5)(n−3)
8

. Thus J(Pn) is decomposable into p copies of P4 and q

copies of C4.

Theorem 1.2. Let n be an even positive integer with p = n−4
2
, q = (n−6)(n−4)

8

and r = n − 3. There exists a decomposition of J(Pn) into p copies of P4,

q copies of C4 and one copy of Sr iff n ≥ 6 and 3p+ 4q + r =
(
n−2
2

)
.

Proof. (Necessity) Let n be an even positive integer. Suppose that there

exists a decomposition of J(Pn) into p copies of P4, q copies of C4 and
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one copy of Sr where p = n−4
2
, q = (n−6)(n−4)

8
and r = n− 3. Since J(Pn)

is connected, n ≥ 5. Since n is even, n ≥ 6. Since |E[J(Pn)]| =
(
n−2
2

)
, we

have 3p+ 4q + r =
(
n−2
2

)
.

(Sufficiency) Consider 3p + 4q + r =
(
n−2
2

)
where p = n−4

2
, q = (n−6)(n−4)

8

and r = n − 3. Clearly x2k−3x2k−5x2k−2x2k−4; 3 ≤ k ≤ n
2

forms P4

in J(Pn). Then we get (n
2

− 2) copies of P4. Also the vertices
{
x1x2k−3x2x2k−2x1/4 ≤ k ≤ n

2

}
∪

{
x3x2k−3x4x2k−2x3/5 ≤ k ≤ n

2

}
∪

{
x5x2k−3x6x2k−2x5/6 ≤ k ≤ n

2

}
∪ . . . ∪

{
xn−7x2k−3xn−6x2k−2xn−7/k = n

2

}

forms C4 in J(Pn). Then we get (n−6)(n−4)
8

copies of C4. Also the vertex

xn−1 is not in any of the above P4 and C4. Since d(xn−1) = n−3 in J(Pn),

xn−1 together with its neighbours forms Sn−3. Thus

E[J(Pn)] = E(P4) ∪ . . . ∪ E(P4)
︸ ︷︷ ︸

p times

∪E(C4) ∪ . . . ∪ E(C4)
︸ ︷︷ ︸

q times

∪E(Sr) where p =

n−3
2
, q = (n−5)(n−3)

8
and r = n − 3. Thus J(Pn) is decomposable into p

copies of P4, q copies of C4 and one copy of Sr.

Theorem 1.3. Let n be an odd positive integer with p = n−3
2

and

q = n−5
2
. There exists a decomposition of J(Pn) into p copies of P4, q com-

plete bipartite graphs of the form K2,2l; l = 1, 2, . . . , n−5
2

iff n ≥ 5 and

3p+ 2q(q + 1) =
(
n−2
2

)
.

Proof. (Necessity) Given that there are p copies of P4 and q complete

bipartite graphs of the form K2,2l; l = 1, 2, . . . , n−5
2

where p = n−3
2

and

q = n−5
2
. Clearly |E(J(Pn))| =

(
n−2
2

)
. Thus we have 3p+ 2q(q + 1) =

(
n−2
2

)
.

(Sufficiency) Consider 3p + 2q(q + 1) =
(
n−2
2

)
where p = n−3

2
and q = n−5

2
.

Let the vertices of J(Pn) be x1, x2, . . . , xn−1. Clearly x2k−3x2k−5x2k−2x2k−4;

3 ≤ k ≤ n+1
2

forms P4 in J(Pn). Then we get (n+1
2

− 2) copies of P4.

Thus p = (n+1
2

− 2). Also, xm and xm+1 are non adjacent vertices for

m = 1, 3, 5, . . . , (n − 6) and they are adjacent with each of the vertices

xm+4, xm+5, xm+6, . . . , xn−1. Thus we get n−5
2

complete bipartite graphs of the

form K2,2l; l = 1, 2, . . . , n−5
2
. Thus E[J(Pn)] = E(P4) ∪ . . . ∪ E(P4)

︸ ︷︷ ︸

p times

∪E(K2,2)

∪ E(K2,4) ∪ . . . ∪ E(K2,n−5) where p = n−3
2
. Thus J(Pn) is decomposable

into p copies of P4 and q complete bipartite graphs of the form K2,2l; l =

1, 2, . . . , n−5
2

where p = n−3
2

and q = n−5
2
.

Theorem 1.4. Let n be an even positive integer with p = n−4
2

and

q = n−6
2
. There exists a decomposition of J(Pn) into p copies of P4, q

complete bipartite graphs of the form K2,2l+1; l = 1, 2, . . . , n−6
2

and one claw

iff n ≥ 6 and 3p+ 2q(q + 2) + 3 =
(
n−2
2

)
.

Proof. (Necessity) Consider that there are p copies of P4, q complete

bipartite graphs of the form K2,2l+1; l = 1, 2, . . . , n−6
2

and one claw where

p = n−4
2

and q = n−6
2
. Since n is even and connected, we have n ≥ 6

Clearly |E[J(Pn)]| =
(
n−2
2

)
. Thus we have 3p+ 2q(q + 2) + 3 =

(
n−2
2

)
.
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(Sufficiency) Consider 3p+2q(q+2)+3 =
(
n−2
2

)
where p = n−4

2
and q = n−6

2
.

Let the vertices of J(Pn) be x1, x2, . . . , xn−1. Clearly x2k−3x2k−5x2k−2x2k−4;

3 ≤ k ≤ n
2

forms P4 in J(Pn). Then we get (n
2
− 2) copies of P4.

Thus p = (n
2
− 2). Also, {xm, xm+1} are non adjacent vertices where m =

1, 3, 5, . . . , (n − 7). Then they are adjacent with each of the vertices

xm+4, xm+5, xm+6, . . . , xn−1. Thus we get n−6
2

complete bipartite graphs of the

form K2,2l+1; l = 1, 2, . . . , n−6
2
. Therefore q = n−6

2
. Also xn−1 is not a vertex

of any P4 and d(xn−1) = n − 6 in complete bipartite graph K2,2l+1; l =

1, 2, . . . , n−6
2
. Since d(xn−1) = n − 3 in J(Pn), the remaining neighbours of

xn−1 together with xn−1 forms a claw. Thus E[J(Pn)] = E(P4) ∪ . . . ∪ E(P4)
︸ ︷︷ ︸

p times

∪E(K2,3)∪E(K2,5)∪ . . .∪E(K2,n−5)∪E(S3) where p = n−4
2
. Thus J(Pn) is

decomposable into p copies of P4, q complete bipartite graphs of the form

K2,2l; l = 1, 2, . . . , n−6
2

and one claw where p = n−4
2

and q = n−6
2
.

Theorem 1.5. Let n be an even positive integer with p = n−4
2
, q = n−6

2
and

r = n
2
. There exists a decomposition of J(Pn) into two copies of Sp; (n

2
− 2)

copies of Sq and two complete graphs of the form Kr and Kr−1 iff n ≥ 6

and 2p− 2q + (r − 1)2 =
(
n−2
2

)
− nq

2
.

Proof. (Necessity) We have |E(J(Pn))| =
(
n−2
2

)
. Since, there are two copies

of Sp, (n
2
− 2) copies of Sq and two complete graphs Kr and Kr−1 where

p = n−4
2

, q = n−6
2

and r = n
2
, we have 2p+ (n

2
− 2)q + (r − 1)2 =

(
n−2
2

)
.

(Sufficiency) Consider 2p−2q+(r−1)2 =
(
n−2
2

)
− nq

2
. Let the vertices of J(Pn)

be labelled as x1, x2, . . . , xn−1. Now, the induced subgraphs

<
{
x1, x3, . . . , xn

2
−1

}
> = Kn

2
and <

{
x2, x4, . . . , xn

2
−2

}
> = Kn

2
−1. Let us

partition V (G) into V1 and V2 where V1 =
{
x1+2k/k = 0, 1, . . . , n−2

2

}
and

V2 =
{
x2+2k/k = 0, 1, . . . , n−4

2

}
. Consider x1, xn−1 ∈ V1. Clearly x1 is not

adjacent with x2 and xn−1 is not adjacent with xn−2. Also, both x1 and

xn−1 are adjacent with the remaining vertices in V2. Therefore x1 is

adjacent with (n
2
−1)−1 vertices. Similarly xn−1 is adjacent with (n

2
−1)−1

vertices. Hence we get 2 copies of Sn−4

2

. Therefore p = n−4
2
. Each vertices of

V1 − {x1, xn−1} is adjacent with (n
2
− 1) − 2 vertices in V2. Thus (n

2
− 2)

vertices of V1 is adjacent with (n
2
− 3) vertices in V2. Thus we have (n

2
− 2)

copies of Sn−6

2

. Therefore q = (n−6
2
). Thus E[J(Pn)] = E(Sp) ∪ E(Sp) ∪

E(Sq) ∪ E(Sq) . . . ∪ E(Sq)
︸ ︷︷ ︸

(n−4

2
) copies

∪E(Kr) ∪ E(Kr−1) where p = n−4
2
, q = n−6

2
and

r = n
2
. Thus J(Pn) is decomposable into two copies of Sp; (

n
2
− 2) copies of

Sq and two complete graphs of the form Kr and Kr−1.

Theorem 1.6. Let n be an odd positive integer with p = n−3
2
, q = n−5

2
and

r = n−1
2
. There exists a decomposition of J(Pn) into one copy of Sp;

n−3
2

copies of Sq and two copies of Kr iff n ≥ 5 and p− 3q
2
+r2−r =

(
n−2
2

)
− nq

2
.

Proof. (Necessity) We have |E[J(Pn)]| =
(
n−2
2

)
. Since there is one copy of
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Sp,
n−3
2

copies of Sq and two copies of Kr where p = n−3
2
, q = n−5

2
and

r = n−1
2
, we have p− 3q

2
+ r2 − r =

(
n−2
2

)
− nq

2
.

(Sufficiency) Suppose that p− 3q
2
+r2−r =

(
n−2
2

)
− nq

2
where p = n−3

2
, q = n−5

2

and r = n−1
2
. Let the vertices of J(Pn) be labelled as x1, x2, . . . , xn−1.

Now, the induced subgraphs <
{
x1, x3, . . . , xn

2
−1

}
> = Kn−1

2

and

<
{
x2, x4, . . . , xn

2
−2

}
> = Kn−1

2

. Let us partition V (G) into V1 and V2

where V1 =
{
x1+2k/k = 0, 1, . . . , n−3

2

}
and V2 =

{
x2+2k/k = 0, 1, . . . , n−3

2

}
.

Let x1 ∈ V1. x1 is not adjacent with only x2 in V2 and x1 is adjacent with

the remaining n−1
2
−1 vertices in V2. Thus we get one copy of Sn−3

2

. Therefore

p = n−3
2
. Each of the remaining vertices of V1−{x1} is adjacent with (n−1

2
−2)

vertices in V2. Then we get (n−3
2
) copies of Sn−5

2

. Therefore q = (n−5
2
).

Thus E[J(Pn)] = E(Sp)∪E(Sq) ∪ E(Sq) ∪ . . . ∪ E(Sq)
︸ ︷︷ ︸

(n−3

2
) copies

∪E(Kr)∪E(Kr) where

p = n−3
2

, q = n−5
2

and r = n−1
2
. Thus J(Pn) is decomposable into one copy

of Sp;
n−3
2

copies of Sq and two copies of Kr.
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