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Abstract 

The objective of this paper is to introduce some stronger types of continuous functions 

called strongly nano𝛼 ̂-continuous function, perfectly nano𝛼 ̂- continuous function and contra 

nano 𝛼 ̂-continuous function. Further some properties and characterizations of these functions 

are obtained. Also their relationships with other continuous functions are investigated. 

Keywords: Nano 𝛼 ̂-closed set, Strongly nano 𝛼 ̂- continuous function, perfectly nano 𝛼 ̂- 

continuous function and contra nano 𝛼 ̂- continuous function. 
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1. Introduction 

Njastad[8] and Levine[7] have introduced 𝛼-open sets and generalized closed sets 

respectively. Lellis Thivagar[4] introduced Nano Topological space with respect to a subset of X 

of an universe which is defined in terms of lower and upper approximations of . Davamani 

Christober and Vinith Mala[2] have defined 𝛼 ̂-closed sets and 𝛼 ̂-continuous function in Nano 

Topological space. 

In this paper, we investigate some stronger forms of continuous functions namely 

strongly nano 𝛼 ̂-continuous function, perfectly nano 𝛼 ̂- continuous function and contra 

nano 𝛼 ̂-continuous function. In addition some properties and characterizations of these 

functions are examined as well as their relationships with existing continuous functions are 

explored. 

2. Preliminaries 

Definition 2.1[4]: Let U be a non-empty finite set of objects called the universe and R be an 

equivalence relation on U. The pair (U, R) is said to be the approximation space. Let UX  . 
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i. The lower approximation of X with respect to R is denoted by )(XLR
and is defined as

 
Ux

R XxRxRXL


 )(:)()( , R(x) denotes the equivalence class determined by x. 

ii. The upper approximation of X with respect to R is denoted by )(XU R
and is defined as

 
Ux

R XxRxRXU


 )(:)()( . 

iii. The boundary region of X with respect to R is denoted by )(XBR
and is defined as 

)()()( XLXUXB RRR  . 

Definition 2.2[4]: Let U be an universe. R be an equivalence relation on U and 

 )(),(),(,,)( XBXUXLUX RRRR    where UX  . )(XR  satisfies the following axioms: 

i. U and )(XR  

ii. The union of the elements of any sub-collection of )(XR  is in )(XR  

iii. The intersection of the elements of any finite sub-collection of )(XR  is in )(XR  

That is, )(XR forms a topology on U called the nano topology on U with respect to X. 

We call (U, ))(XR as the nano topological space. The elements of )(XR are called 

nano-open sets. 

Definition 2.3[4]: Let (U, ))(XR is a nano topological space with respect to X where UX 
and if UA , then the nano interior of A is defined as the union of all nano-open subsets of A 

and is denoted by )int( AN . The nano closure of A is defined as the intersection of all nano 

closed sets containing A and is denoted by )(ANcl . 

Definition 2.4[2]: A subset A of a space (U, )(XR ) is called nano 𝛼 ̂-closed if GAclN )(  

whenever GA  and G is nano ̂-open in ))(,( XU R . The complement of nano 𝛼 ̂-closed set is 

nano 𝛼 ̂-open set. 

Definition 2.5: A function : ( , 𝜏𝑅 ) → ( , 𝜏𝑅′ ) is said to be 

i. Nano-continuous[5] on U if the inverse image of every nano open set in V is nano open in 

U. 

ii. Nano  -continuous [5] on U if the inverse image of every nano open set in V is nano -

open in U. 

iii. Nano g-continuous [1] on U if the inverse image of every nano open set in V is nano -

open in U. 

iv. Nano  -generalized continuous [10] on U if the inverse image of every nano open set in 

V is nano  generalized open in U. 

v. Nano ̂-continuous [3] on U if the inverse image of every nano open set in V is nano ̂ -

. 
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vi. Nano 𝛼 ̂-continuous [2] if the inverse image of every nano closed set in V is nano 𝛼 ̂-

closed in U. 

vii. Nano 𝛼 ̂-irresolute [2] if the inverse image of every nano 𝛼 ̂-closed set in V is nano 𝛼 ̂-

closed in U. 

viii. Nano strongly continuous [6] if −1  is nano clopen in U for every subset  in . 

ix. Nano Perfectly continuous [6] if −1  is nano clopen in U for every nano open set A in 

V. 

x. Nano contra continuous [6] if the inverse image of every nano open set in V is nano 

closed in U. 

3. Strongly Nano 𝛼 ̂-continuous functions 

In this section, we introduce the following definition. 

Definition 3.1: A function : ( , 𝜏𝑅 ) → , 𝜏𝑅′ is said to be strongly nano 𝛼 ̂-

continuous if )(1 Bf   is nano closed in U for every nano 𝛼 ̂-closed set B in V. 

Example 3.2: Let = { , , , }, /𝑅 = {{ }, { , }, { }} and = { , } ⊆ . Then 𝜏𝑅 ={ , ∅, { }, { , }, { , , }}. Also let = { , , , }, 𝑅′⁄ = {{ , }, { }, { }},  = { , } ⊆ . 

Then nano 𝛼 ̂-closed sets of V are{ , ∅, { }, { , }, { , }, { , }, { , , }, { , , }, { , , }}. 

Define a function : →  by = , = , =  and = . Then inverse 

image of every nano 𝛼 ̂-closed sets in V is nano closed in U. Hence f is strongly nano𝛼 ̂-

continuous. 

Theorem 3.3: A function : ( , 𝜏𝑅 ) → , 𝜏𝑅′  is strongly nano 𝛼 ̂-continuous if and 

only if −1  is nano open in , 𝜏𝑅  for every nano 𝛼 ̂-open set B in , 𝜏𝑅 . 

Theorem 3.4: Every strongly nano𝛼 ̂-continuous function is 

i. Nano continuous and hence nano generalized continuous and nano 𝛼-continuous. 

ii. Nano 𝛼 ̂-continuous and hence nano 𝛼 - continuous and nano -continuous 

iii. Nano ̂-continuous. 

Proof: Follows from the definitions. 

Remark 3.5: The following example shows that the implications in theorem 3.4 are not 

reversible in general. 

Example 3.6: Let  = { , , , }, = { , } and 𝜏𝑅 = { , ∅, { }, { , }, { , , }}. Also ={ , , , }, = { , } and 𝜏𝑅 = { , ∅, { }, { , }, { , , }}. Define : →  by =, = , =  and = . Here f is nano continuous, nano 𝛼 ̂-continuous, nano𝛼-

continuous, nano -continuous, nano ̂-continuous, nano -continuous and nano 𝛼 -continuous 

but not strongly nano 𝛼 ̂-continuous. 
Theorem 3.7

: 
Every

 
strongly nano continuous function is strongly nano 𝛼 ̂

 
-
 

continuous function
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Proof: Follows from the definitions. 

Remark 3.8: The following example shows that the converse of theorem 3.7 need not be true. 

Example 3.9: In example 3.2, f is strongly nano𝛼 ̂-continuous but not strongly nano continuous. 

Theorem 3.10: Every strongly nano 𝛼 ̂- continuous function is nano 𝛼 ̂-irresolute. 

Proof: Follows from the definitions. 

Corollary 3.11: Every strongly nano continuous function is nano𝛼 ̂-irresolute. 

Proof follows from theorem 3.7 and theorem 3.10. 

Remark3.12: The converse of the theorem 3.10 need not be true as the following example 

shows. 

Example 3.13:  = { , , , }with = { , } ⊆ , /𝑅 = {{ , }, { }, { }}. Then 𝜏𝑅 ={ , ∅, { }, { , }, { , , }}. Also let = { , , , }, 𝑅′⁄ = {{ , }, { }, { }}, = { , } ⊆ . 

Then nano 𝛼 ̂-closed sets of V are , ∅, { }, { , }, { , }, { , }, { , , }, [ , , }, { , , }. Define : →  by = , = , = , = . Here f is nano𝛼 ̂-irresolute but not 

strongly nano 𝛼 ̂-continuous. 

Theorem 3.14: The composition of two strongly nano 𝛼 ̂-continuous functions is strongly nano 𝛼 ̂-continuous. 

`   4. Perfectly Nano 𝛼 ̂-continuous functions 

We introduce the following definition. 

Definition4.1: A function : ( , 𝜏𝑅 ) → , 𝜏𝑅′  is said to be perfectly nano 𝛼 ̂-

continuous if )(1 Bf   is nano clopen in U for every nano 𝛼 ̂-closed set B in V. 

Example 4.2: Let = { , , , } with = { , , } ⊆ , /𝑅 = {{ , }, { , }}. Then 𝜏𝑅 ={ , ∅, { , }, { , }}. Also let = { , , , }, 𝑅′⁄ = {{ , }, { , }}, = { , , } ⊆ . 𝜏𝑅′ ={ , ∅, { , }, { , }}. Define : →   by = , = , = , = . Here inverse 

image of every nano 𝛼 ̂-closed sets in V is nano clopen in U. Hence f is perfectly nano 𝛼 ̂-

continuous. 

Theorem 4.3: A function : ( , 𝜏𝑅 ) → , 𝜏𝑅′  is perfectly nano 𝛼 ̂-continuous if and 

only if −1  is nano clopen in , 𝜏𝑅  for every nano 𝛼 ̂-open set B in , 𝜏𝑅′ . 

Theorem 4.4: Every perfectly nano𝛼 ̂-continuous function is strongly nano 𝛼 ̂-continuous. 

Proof: Follows from the definitions. Remark 4.5

: 

The

 

converse of the theorem

 

4.4

 

need not be true.
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Example 4.6: In example 3.2, f is strongly nano 𝛼 ̂-continuous but not perfectly nano 𝛼 ̂-

continuous. 

Theorem 4.7: If , 𝜏𝑅  is extremely disconnected then every strongly nano𝛼 ̂-continuous is 

perfectly nano 𝛼 ̂-continuous. 

Proof: Let : ( , 𝜏𝑅 ) → , 𝜏𝑅′  be a strongly nano 𝛼 ̂-continuous function. Then for 

every nano 𝛼 ̂-closed set in V, −1 is nano closed in U. Since U is extremely disconnected, −1  is nano clopen in U. Hence f  is perfectly nano 𝛼 ̂-continuous. 

Theorem 4.8: Let , 𝜏𝑅  be an indiscrete nano topological space, , 𝜏𝑅′  be a nano 

topological space and : ( , 𝜏𝑅 ) → , 𝜏𝑅′  be any function, then the following 

statements are equivalent. 

i. f  is perfectly nano𝛼 ̂-continuous. 

ii. f  is strongly nano𝛼 ̂-continuous. 

Proof: (i) (ii) Follows from theorem 4.4. 

(ii) (i) Let  be a nano 𝛼 ̂-closed set in . By hypothesis, −1  is nano closed in . Since , 𝜏𝑅  is an indiscrete nano topological space, −1  is nano clopen in . Hence  is 

perfectly nano 𝛼 ̂-continuous. 

Theorem 4.9: Every strongly nano continuous function is perfectly nano𝛼 ̂-continuous. 

Proof: Follows from the definitions. 

Remark 4.10: The following example shows that the converse of the above theorem need not be 

true. 

Example 4.11: In example 4.2, f is perfectly nano 𝛼 ̂-continuous, but not strongly nano 

continuous. 

Theorem 4.12: The composition of two perfectly nano 𝛼 ̂-continuous function is perfectly 

nano 𝛼 ̂-continuous. 

5. Contra Nano 𝛼 ̂-continuous functions 

In this section the notion of nano contra 𝛼 ̂-continuity is introduced and its properties are 

investigated. 

Definition 5.1: A function : ( , 𝜏𝑅 ) → ( , 𝜏𝑅′ ) is said to be contra nano 𝛼 ̂-continuous 

if the inverse image of every nano open set in V is nano 𝛼 ̂-closed in U. 

Example 5.2: Let = { , , , } with = { , } ⊆ , /𝑅 = {{ , }, { }, { }}. Then the 

nano 𝛼 ̂–closed sets are , ∅, { }, { , }, { , }, { , }, { , , }, { , , }, { , , }.  Also let =
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{ , , , }, 𝑅′⁄ = {{ , }, { , }}, = { , } ⊆ .Then 𝜏𝑅′ = { , ∅, { , }}. Define : →  

by = , = , = , = . The inverse image of every nano open set in V is 

nano 𝛼 ̂-closed in U. Hence f  is contra nano 𝛼 ̂-continuous. 

Theorem 5.3: A function : ( , 𝜏𝑅 ) → , 𝜏𝑅′ ) is said to be contra nano𝛼 ̂-continuous if 

and only if −1  is nano 𝛼 ̂-open in U for every nano closed set B in V. 

Remark 5.4: The concept of strongly nano 𝛼 ̂- continuity and contra nano 𝛼 ̂-continuity are 

independent as shown in the following example. 

Example 5.5: In example 3.2, the function f is strongly nano 𝛼 ̂-continuous but not contra nano 𝛼 ̂-continuous. In example 5.2, the function f is contra nano 𝛼 ̂-continuous but not strongly 

nano 𝛼 ̂-continuous. 

Theorem 5.6: Every perfectly nano 𝛼 ̂-continuous function is contra nano𝛼 ̂-continuous. 

Proof: Follows from the definitions. 

Remark 5.7: The converse of the above theorem is not true as shown in the following example. 

Example 5.8: In example 5.2, f is contra nano𝛼 ̂-continuous function, but −1 { } = { } 

which is neither nano closed nor nano open in U. Hence f is not perfectly nano 𝛼 ̂-continuous. 

Remark 5.9: The composition of two contra nano 𝛼 ̂-continuous function need not be contra 

nano 𝛼 ̂-continuous as the following example shows. 

Example 5.10: Let = { , , , } with 𝑅⁄ = {{ , }, { }, { }} = { , } ⊆ . Then the 

nano 𝛼 ̂-closed sets are  , ∅, { }, { , }, { , }, { , }, { , , }, { , , }, { , , }. Let ={ , , , } with 𝑅′⁄ = {{ , }, { , }} and = { , } ⊆ , then 𝜏𝑅′ = { , ∅, { , }}. Also let = { , , , } with 𝑅′′⁄ = {{ }, { , }, { }} and 𝑧 =  { , }.Then 𝜏𝑅′′ 𝑧 ={ , ∅, { }, { , , }, { , }}. Define : →  and : →  by = , = , =, =  and = , = , = , = . Here f and  are contra nano 𝛼 ̂-

continuous functions. But ∘ −1{ } = −1( −1 { } ) = −1 { } = { }. Which is not nano 𝛼 ̂-closed in U. Hence ∘  is not contra nano 𝛼 ̂-continuous. 

Theorem 5.11: Let : ( , 𝜏𝑅 ) → , 𝜏𝑅′  and : ( , 𝜏𝑅′ ) → , 𝜏𝑅′′  be any two 

functions such that ∘ : ( , 𝜏𝑅 ) → , 𝜏𝑅′′  then, 

i. ∘  is contra nano 𝛼 ̂-continuous if  is nano continuous and  is contra nano 𝛼 ̂-

continuous. 

ii. ∘  is contra nano 𝛼 ̂-continuous if  is contra nano 𝛼 ̂-continuous and  is nano 𝛼 ̂-

irresolute. 

iii. ∘  is contra nano 𝛼 ̂-continuous if  is contra nano 𝛼 ̂-continuous and is strongly 

nano 𝛼 ̂-continuous((or) perfectly nano𝛼 ̂-continuous). 
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