Results on annihilator graph of a commutative Ring

A.M.ANTO ${ }^{1}$ T.SUMI ${ }^{2}$ B.UMA DEVI ${ }^{3}$

1 Assistant Professor, Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakavilai-629153, Tamil Nadu, India. antoalexam@gmail.com.

2 Research Scholar, Register Number-18213152092013, Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India. 93sumi93@gmail.com.

3 Associate Professor, Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India. umasub1968@gmail.com.
${ }^{1,2,3}$ Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

Abstract

Let R be a commutative ring with identity $1 . Z(R)$ be its set of zero-divisors, and if $a \in Z(R)$, then let $\operatorname{ann}(a)=\{d \in R \mid d a=0\}$. The annihilator graph R is the (undirected) graph $A G C(R)$ with vertices $Z(R)^{*}=Z(R)-\{0\}$, and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}(x) \neq \operatorname{ann}(y)$. In this article, we study the graph $A G C(R)$. For a commutative ring R, we show that $A G C(R)$ is connected with diameter at most two and with girth at most four provided that $A G C(R)$ has a cycle.

Key Words: Annihilator Graph; diameter; girth; Zero divisor Graph.
2010 Mathematics Subject Classification: Primary 13A15; Secondary 13B99; 05C99.

0.1 INTRODUCTION

Let R be a commutative ring with identity 1 , and let $Z(R)$ be its set of zero divisors. Probably the most attention has been to the zero divisor graph $\Gamma(R)$ for a commutative ring R. The set of vertices of $\Gamma(R)$ is $Z(R)^{*}$, and two distinct vertices x and y are adjacent if and only if $x y=0$. The zero-divisor graph was introduced by David F. Anderson and Paul S. Livingston in [1]. In this article, we introduce the annihilator graph $A G C(R)$ for a commutative ring R. Let $a \in Z(R)$ and let $\operatorname{ann}(a)=\{d \in R \mid d a=0\}$. The annihilator graph of R is the (undirected) graph $A G C(R)$ with vertices $Z(R)^{*}=Z(R)-\{0\}$, and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}(x) \neq \operatorname{ann}(y)$.

In the second section, we show that $A G C(R)$ is connected with diameter at most two. Also, we determine when $A G C(R)$ is a complete graph, or a star graph.

Let G be a (undirected) graph. We say that G is connected if there is a path between any two distinct vertices. For vertices x and y of G, we define $d(x, y)$ to be the length of a shortest path from x to $y((d(x, x)=0$ and $d(x, y)=\infty$ if there is no path). Then the diameter of G is $\operatorname{diam}(G)=\sup \{d(x, y) \mid x$ and y are vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty)$ if G contains no cycles.

A graph G is complete if any two distinct vertices are adjacent. The complete graph with n vertices will be denoted by K^{n} (we allow n to be an infinite cardinal). A complete bipartite graph is a graph G which may be partitioned into two disjoint nonempty vertex sets A and B such that two distinct vertices are adjacent if and only if they are in distinct vertex sets.

Throughout, R will be a commutative ring with nonzero identity, $Z(R)$ its set of zero divisors, $\operatorname{Nil(R)}$ its set of nilpotent elements. $U(R)$ its group of units. $T(R)$ its total quotient ring, and $\operatorname{Min}(R)$ its set of minimal prime ideals. We say that R is reduced if $\operatorname{Nil}(R)=\{0\}$.

0.2 BASIC PROPERTIES OF AGC(R)

In this section, we show that $A G C(R)$ is connected with diameter at most two. If $A G C(R) \neq \Gamma(R)$, we show that $\operatorname{gr}(A G C(R)) \in\{3,4\}$.
Theorem 0.2.1. [3, Theorem 3.13] Let R be a nonreduced commutative ring with $\left|\operatorname{Nil}(R)^{*}\right| \geq 2$, and let $\Gamma_{N}(R)$ be the induced subgraph of $\Gamma(R)$ with vertices Nil $(R)^{*}$. Then $\Gamma_{N}(R)$ is complete if and only if $\operatorname{Nil}(R)^{2}=0$.

Lemma 0.2.2. Let R be a nonreduced commutative ring with $\left|Z(R)^{*}\right|=\left|\operatorname{Nil}(R)^{*}\right| \geq$ 2. Then $A G C(R)$ is disconnected if and only if $\operatorname{Nil}(R)^{2}=\{0\}$.

Proof. (\Rightarrow) Assume that $A G C(R)$ is disconnected. Suppose $\operatorname{Nil}(R)^{2} \neq 0$. Let $x, y, z \in Z(R)^{*}$ and assume that $x^{2} \neq 0$. Since x is a zero divisor, then there
is a $y \in Z(R)^{*}$ such that $x y=0$. Therefore $y \in \operatorname{ann}(x)$ and $x \in \operatorname{ann}(y)$, but $x \notin \operatorname{ann}(x)$. Thus $\operatorname{ann}(x) \neq \operatorname{ann}(y)$ and hence $x-y$ is an edge of $A G C(R)$, which is a condradiction. Thus $\operatorname{Nil}(R)^{2}=\{0\}$.
(\Leftarrow) If $\operatorname{Nil}(R)^{2}=\{0\}$.
Case 1. Suppose $\left|Z(R)^{*}\right|=\left|\operatorname{Nil}(R)^{*}\right|=2$. Let $a, b \in Z(R)^{*}$ such that $a b=0$. Since $\operatorname{Nil}(R)^{2}=0$. Then $\operatorname{ann}(a)=a n n(b)$. Hence $a-b$ is not an edge in $\operatorname{AGC}(R)$.
Case 2. Suppose $\left|Z(R)^{*}\right|=\left|\operatorname{Nil}(R)^{*}\right| \geq 3$. Let $a, b, c \in Z(R)^{*}$. Since $\operatorname{Nil}(R)^{2}=0$, then $\Gamma_{N}(R)$ is complete by Theorem 0.2.1. So that $a-b-c-a$ are adjacent in $\Gamma(R)\left[\operatorname{Since}\left|Z(R)^{*}\right|=\left|\operatorname{Nil}(R)^{*}\right|\right]$. Thus $\operatorname{ann}(a)=\operatorname{ann}(b)=\operatorname{ann}(c)$ and hence $a-b, b-c, c-a$ are not adjacent in $A G C(R)$.
In both cases $A G C(R)$ is disconnected.
The following is an example of disconnected graph.
Example 0.2.3. Let $R=\frac{\mathbb{Z}_{2}[x, y]}{\langle x, y\rangle^{2}}$. Then $\Gamma(R)=K_{3}$ and $A G C(R)=\bar{K}_{3}$.
The following results are true except in the case of Theorem 0.2.2.
Lemma 0.2.4. If $x-y$ is an edge of $\Gamma(R)$, then $x-y$ is an edge of $A G C(R)$. In particular P is a path in $\Gamma(R)$, then P is also a path in $\operatorname{AGC(R)}$.

Proof. Given, $x-y$ is an edge of $A G C(R)$, then $x y=0$. Therefore $y \in \operatorname{ann}(x)$ and $x \in \operatorname{ann}(y)$. But $x \notin \operatorname{ann}(x)$ and $y \notin \operatorname{ann}(y)$. Therefore $\operatorname{ann}(x) \neq \operatorname{ann}(y)$. Hence $x-y$ is an edge of $A G C(R)$. Suppose $x-y-z$ is a path in $\Gamma(R)$, then $x-y-z$ is also a path in $A G C(R)$.

Lemma 0.2.5. (1) If $\operatorname{ann}(x) \subset \operatorname{ann}(y)$ or $\operatorname{ann}(y) \subset \operatorname{ann}(x)$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A G C(R)$.
(2) If $\operatorname{ann}(x) \nsubseteq \operatorname{ann}(y)$ or $\operatorname{ann}(y) \nsubseteq \operatorname{ann}(x)$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A G C(R)$.
(3) If $d_{\Gamma(R)}(x, y)=3$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A G C(R)$.

Proof. (1) Since $\operatorname{ann}(x) \subset \operatorname{ann}(y)$, then there exixts an element $a \in \operatorname{ann}(y)$, and $a \notin \operatorname{ann}(x)$ such that $\operatorname{ann}(x) \neq \operatorname{ann}(y)$. Hence $x-y$ is an edge of $A G C(R)$.
(2) Suppose $\operatorname{ann}(x) \nsubseteq \operatorname{ann}(y)$ or $\operatorname{ann}(y) \nsubseteq \operatorname{ann}(x)$, then $\operatorname{ann}(x) \neq \operatorname{ann}(y)$. Hence $x-y$ is an edge of $A G C(R)$.
(3) Let x and y be distinct vertices in $Z(R)^{*}$. Given $d_{\Gamma(R)}(x, y)=3$. Let us assume that $x-a-b-y$ is a shortest path connecting x and y in $\Gamma(R)$ where a, b are distinct vertices in $Z(R)^{*}$. We have $x a=0, a b=0, b y=0$. Therefore $a \in \operatorname{ann}(x)$ and $a \notin \operatorname{ann}(y)$. This implies that $\operatorname{ann}(x) \neq \operatorname{ann}(y)$ and hence $x-y$ is an edge of $A G C(R)$.

Theorem 0.2.6. Let R be a commutative ring. Suppose that $d_{\Gamma(R)}(x, y)=3$ for some distinct $x, y \in Z(R)^{*}$. Then there exists a cycle of length 3 in $A G C(R)$ and at least one edge of C is an edge of $\Gamma(R)$.

Proof. Given $d_{\Gamma(R)}(x, y)=3$ for some distinct $x, y \in Z(R)^{*}$. Then there exists a path from $x-a-b-y$ in $\Gamma(R)$, where $a, b \in Z(R)^{*}$ and $a \neq b$. In this, ann $(x) \nsubseteq$ ann (y) and $\operatorname{ann}(y) \nsubseteq a n n(x)$. Then $x-y$ is an edge of $A G C(R)$ and $b x \neq 0$. So $b \notin \operatorname{ann}(x)$ and $x \notin \operatorname{ann}(b)$. Therefore $\operatorname{ann}(x) \neq a n n(b)$. Then $x-b$ is an edge of $A G C(R)$. Hence $C: x-b-y-x$ is a cycle of length 3 in $A G C(R)$ and at least one edge of C is an edge of $\Gamma(R)$.

Theorem 0.2.7. Let R be a reduced commutative ring. Suppose that $x-y$ is an edge of $A G C(R)$ that is not an edge of $\Gamma(R)$. Then there is a cycle of length 3 in $A G C(R)$ and at least one edge of C is an edge of $\Gamma(R)$.

Proof. Suppose that $x-y$ is an edge of $A G C(R)$ that is not an edge of $\Gamma(R)$. Then $\operatorname{ann}(x) \neq \operatorname{ann}(y)$ such that $a \in \operatorname{ann}(x)$ and $a \notin \operatorname{ann}(y)$. Then $a x=0$. Since R is reduced $a \neq x$ and y is a zero divisor. Then there is $b \neq a \in Z(R)^{*}$ such that $b y=0$. Since R is reduced, so that $b \neq y$. Hence $x-b$ is an edge of $\operatorname{AGC}(R)$, we have $x-y-b-x$ is a cycle of length 3 in $A G C(R)$ and at least one edge of C is an edge of $\Gamma(R)$.

Theorem 0.2.8. If $x-y$ is not an edge of $A G C(R)$ for some distinct $x, y \in Z(R)^{*}$, then there is a $w \in Z(R)^{*}-\{x, y\}$ such that $x-w-y$ is a path in $\Gamma(R)$ and hence $x-w-y$ is also a path in $A G C(R)$.

Proof. Given, $x-y$ is not an edge of $A G C(R)$ for some distinct $x, y \in Z(R)^{*}$. Therefore $\operatorname{ann}(x)=\operatorname{ann}(y)$. Then there exists an element $w \in \operatorname{ann}(x)=\operatorname{ann}(y)$ such that $x w=y w=0$. We conclude that $x-w-y$ is a path in $\Gamma(R)$. Hence by Lemma 0.2.4 $x-w-y$ is also a path in $A G C(R)$.

Theorem 0.2.9. Let R be a commutative ring with $|Z(R)|^{*} \geq 2$. Then $A G C(R)$ is connected and $\operatorname{diam}(A G C(R)) \leq 2$.

Proof. Case 1.If $\left|Z(R)^{*}\right|=2$. Let $x, y \in Z(R)^{*}$. Then $x y=0$. Hence $x-y$ is an edge of $\Gamma(R)$. By Lemma 0.2.4 $x-y$ is an edge of $A G C(R)$.
Case 2. If $\left|Z(R)^{*}\right|>2$. Let $x, y, z \in Z(R)^{*}$. Suppose $x y \neq 0$, using Lemma 0.2.4, we get the result.

0.3 When $A G C(R)=\Gamma(R)$?

Theorem 0.3.1. [1, Theorem 2.5] Let R be a commutative ring. Then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertex if and only if either $R=\mathbb{Z}_{2} \times A$ where A is an integral domain, or $Z(R)$ is an annihilator ideal (and hence is prime).

Theorem 0.3.2. Let R be a commutative ring with identity 1 . Then there is a vertex $x \in Z(R)^{*}$ such that x is adjacent to all vertices in $A G C(R)$ and hence $A G C(R)=\Gamma(R)$ if and only if $R=\mathbb{Z}_{2} \times A$ where A is an integral domain.

Proof. (\Rightarrow). Since $A G C(R)=\Gamma(R)$, using Theorem 0.3.1 we get $R=\mathbb{Z}_{2} \times A$. (\Leftarrow). Given, $R=\mathbb{Z}_{2} \times A$ where A is an integral domain. Using Theorem 0.3.1, there is a vertex which is adjacent to every other vertex in $\Gamma(R)$. Let $x \in Z(R)^{*}$ such that x is adjacent to all vertices of $\Gamma(R)$. Clearly ann $(x)=Z(R)-\{x\}$ for some $x \in Z(R)^{*}$, then x is adjacent to every other vertex. Thus ann $(y)=\{0, x\}$ for every $y-\{x\} \in Z(R)^{*}$. Therefore $\operatorname{ann}(y)=\operatorname{ann}(z)$ for every $z \in Z(R)^{*}-\{x\}$. Hence no two elements in $Z(R)^{*}-\{x\}$ are not adjacent in $A G C(R)$ and hence $A G C(R)=\Gamma(R)$.

Theorem 0.3.3. [4, Theorem 2.8] Let R be a commutative ring. Then $\operatorname{diam}(\Gamma(R))=$ 2 if and only if either (a) R is reduced with exactly two minimal primes and at least three nonzero divisors, or (b) $Z(R)$ is an ideal whose square is not $\{0\}$ and each pair of distinct zero divisors has a nonzero annihilator.

Theorem 0.3.4. [3, Theorem 3.2] Let R be a reduced commutative ring that is not an integral domain, and let $z \in Z(R)^{*}$. Then:
(a) $\operatorname{ann}_{R}(z)=a n n_{R}\left(z^{n}\right)$ for each positive integer $n \geq 2$;
(b) If $c+z \in Z(R)$ for some $c \in a n n_{R}(z) \backslash\{0\}$, then ann $n_{R}(z+c)$ is properly contained in ann $n_{R}(z)\left(\right.$ i.e., $\left.\operatorname{ann}_{R}(c+z) \subset a n n_{R}(z)\right)$. In particular, if $Z(R)$ is an ideal of R and $c \in a n n_{R}(z) \backslash\{0\}$, then ann $n_{R}(z+c)$ is properly contained in $\operatorname{ann}_{R}(z)$.

Theorem 0.3.5. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent.
(a) $A G C(R)$ is complete;
(b) $\Gamma(R)$ is complete;
(c) R is ring isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. $(a) \Rightarrow(b)$. Let $b \in Z(R)^{*}$. Suppose that $b^{2} \neq a$. Since $\operatorname{ann}(b)=a n n\left(b^{2}\right)$, So that $b-b^{2}$ is not an edge of $\operatorname{AGC}(R)$, a condradiction. Thus $b^{2}=b$ for each $b \in Z(R)^{*}$. Let x, y be two distinct elements in $Z(R)^{*}$. To prove $x-y$ is an edge of $\Gamma(R)$. Suppose that $x y \neq 0$. Since $x-y$ is an edge of $A G C(R)$, we have $x y \neq 0$. Now, $\operatorname{ann}(x(x y))=\operatorname{ann}\left(x^{2} y\right)=\operatorname{ann}(x y)$. Thus $x y-x$ is not an edge of $A G C(R)$, a condradiction. Hence $x y=0$ and $x-y$ is an edge of $\Gamma(R) .(b) \Rightarrow(c)$ It follows from Theorem 0.3.3.
$(c) \Rightarrow(a)$ Given, $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, which is complete. Hence $A G C(R)$ is complete.
Theorem 0.3.6. Let R be a reduced commutative ring that is not an integral domain and assume that $Z(R)$ is an ideal of R. Then $A G C(R) \neq \Gamma(R)$ and $\operatorname{gr}(A G C(R))=$ 3.

Proof. Let $z \in Z(R)^{*}, a \in \operatorname{ann}(z)-\{0\}$, and $h \in \operatorname{ann}(a+z)-\{0\}$. Then $h \in \operatorname{ann}(a+z) \subset \operatorname{ann}(z)$ by Theorem 0.3.4 and thus $h a=0$, since $a^{2} \neq 0$, we have $h \neq a$, and hence $h+z \neq a+z$, since $\{h, a\} \subseteq \operatorname{ann}(z)$ and $z^{2} \neq 0$, we have $(h+z)$ and $(a+z)$ are non zero distinct elements in $Z(R)^{*}$. Since $(h+z)(a+z)=z^{2} \neq 0$, we have $(h+z)-(a+z)$ is not an edge of $\Gamma(R)$. Since $a^{2} \neq 0$ and $h^{2} \neq 0$, so $(h+z)-(a+z)$ is an edge of $A G C(R)$. Thus $A G C(R) \neq \Gamma(R)$ and $h-a-(h+z)-h$ is a cycle of length 3 in $A G C(R)$ and $\operatorname{gr}(A G C(R))=3$.

Theorem 0.3.7. Let R be a reduced commutative ring with $|\operatorname{Min}(R)| \geq 3$ (possibly $\operatorname{Min}(R)$ is infinite). Then $A G C(R) \neq \Gamma(R)$ and $\operatorname{gr}(A G C(R))=3$.

Proof. If $Z(R)$ is an ideal of R, then $A G C(R) \neq \Gamma(R)$ by Theorem 0.3.6. Hence assume that $Z(R)$ is not an ideal of R. Since $|\operatorname{Min}(R)| \geq 3$, we have $\operatorname{diam}(\Gamma(R))=3$ by Theorem 0.3.3 and by Theorem 0.2.9 $A G C(R) \neq \Gamma(R)$. Since R is reduced and $A G C(R) \neq \Gamma(R)$, we have $\operatorname{gr}(A G C(R))=3$ by Theorem 0.2.7.

Theorem 0.3.8. Let R be a reduced commutative ring that is not an integral domain. Then $A G C(R)=\Gamma(R)$ if and only if $|\operatorname{Min}(R)|=2$.

Proof. Assume that $A G C(R)=\Gamma(R)$. Since R is reduced commutative ring that is not an integral domain, $|\operatorname{Min}(R)|=2$ by Theorem 0.3.7. Conversely, assume that $|\operatorname{Min}(R)|=2$. Let p_{1}, p_{2} minimal prime ideal of R. Since R is reduced, we have $Z(R)=p_{1} \cup p_{2}$ and $p_{1} \cap p_{2}=\{0\}$. Let $x, y \in Z(R)^{*}$. Assume that $x, y \in p_{1}$. Since $p_{1} \cap p_{2}=\{0\}$, neither $x \in p_{2}$ nor $y \in p_{2}$, and thus $x y \neq 0$. Since $p_{1} p_{2} \subseteq p_{1} \cap p_{2}=\{0\}$, it follows that $\operatorname{ann}(x)=\operatorname{ann}(y)=p_{2}$. Thus $x-y$ is not an edge of $A G C(R)$. Similarly if $x, y \in p_{2}$, then $x-y$ is not an edge of $A G C(R)$. Hence each edge of $A G C(R)$ is an edge of $\Gamma(R)$, and $A G C(R)=\Gamma(R)$.

Theorem 0.3.9. [2, Theorem 2.2] The following statement are equivalent for a reduced commutative ring R.
(1) $\operatorname{gr}(\Gamma(R))=4$.
(2) $T(R)=F_{1} \times F_{2}$, where each F_{i} is a field with $\left|F_{i}\right| \geq 3$.
(3) $\Gamma(R)=K_{m, n}$ with $m, n \geq 2$.

Theorem 0.3.10. Let R be a reduced commutative ring. Then the following statements are equivalent:
(1) $\operatorname{gr}(A G C(R))=4$;
(2) $A G C(R)=\Gamma(R)$ and $\operatorname{gr}(\Gamma(R))=4$;
(3) $\operatorname{gr}(\Gamma(R))=4$;
(4) $T(R)$ is ring -isomorphic to $F_{1} \times F_{2}$, where each F_{i} is a field with $\left|F_{i}\right| \geq 3$;
(5) $|\operatorname{Min}(R)|=2$ and each minimal prime ideal of R has at least three distinct elements;
(6) $\Gamma(R)=K_{m, n}$ with $m, n \geq 2$;
(7) $A G C(R)=K_{m, n}$ with $m, n \geq 2$.

Proof. $\quad(1) \Rightarrow(2)$. Since $\operatorname{gr}(A G C(R))=4 . \quad A G C(R)=\Gamma(R)$ by Theorem 0.2.7, and thus $\operatorname{gr}(\Gamma(R))=4$. $(2) \Rightarrow(3)$. Assume that $A G C(R)=\Gamma(R)$ and $\operatorname{gr}(\Gamma(R))=$ 4. Thus $\operatorname{gr}(\Gamma(R))=4$. (3) $\Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$ are clear by Theorem 0.3.9. $(6) \Rightarrow(7)$. Since (6) implies $|\operatorname{Min}(R)|=2$ by Theorem 0.3 .9 , we conclude that $A G C(R)=\Gamma(R)$ by Theorem 0.3.8, and thus $\operatorname{gr}(A G C(R))=\Gamma(R)=4 .(7) \Rightarrow(1)$. Since $A G C(R)$ is a complete bipartite and $m, n \geq 2$. Clearly $\operatorname{gr}(A G C(R))=4$
Theorem 0.3.11. [2, Theorem 2.4] The following statement are equivalent for a reduced commutative ring R.
(1) $\operatorname{gr}(\Gamma(R))=\infty$.
(2) $T(R)=\mathbb{Z}_{2} \times F$, where each F is a field.
(3) $\Gamma(R)=K_{1, n}$ for some $n \geq 1$.

Theorem 0.3.12. Let R be a reduced commutative ring. Then the following statements are equivalent:
(1) $\operatorname{gr}(A G C(R))=\infty$;
(2) $A G C(R)=\Gamma(R)$ and $g r(\Gamma(R))=\infty$;
(3) $\operatorname{gr}(\Gamma(R))=\infty$;
(4) $T(R)$ is ring -isomorphic to $\mathbb{Z}_{2} \times F$, where each F is a field;
(5) $|\operatorname{Min}(R)|=2$ and at least one minimal prime ideal of R has exactly two distinct elements;
(6) $\Gamma(R)=K_{1, n}$ with $n \geq 1$;
(7) $A G C(R)=K_{1, n}$ with $n \geq 1$.

Proof. (1) $\Rightarrow(2)$. Since $\operatorname{gr}(A G C(R)=\infty, A G C(R)=\Gamma(R)$ by Theorem 0.2.7, and thus $\operatorname{gr}(A G C(R))=\infty$. $(2) \Rightarrow(3)$. Given, $A G C(R)=\Gamma(R)$ and $\operatorname{gr}(\Gamma(R))=$ ∞. Thus $\operatorname{gr}(\Gamma(R))=\infty$. (3) $\Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$ are clear by Theorem 0.3.11. $(6) \Rightarrow(7)$. Since (6) implies $|\operatorname{Min}(R)=2|$ by Theorem 0.3.11, we conclude that $A G C(R)=\Gamma(R)$ by Theorem 0.3.8 and thus $\operatorname{gr}(A G C(R))=\operatorname{gr}(\Gamma(R))=\infty .(7) \Rightarrow$ (1) Since $A G C(R)$ is a star graph. Thus $\operatorname{gr}(A G C(R))=\infty$.

References

[1] Anderson, D. F., Livinston, P.S. (1999). The zero divisor graph of a commutative ring. J. Algebra 217: 434-447.
[2] Anderson, D. F., Mulay, S.B. (2007). On the diameter and girth of a zerodivisor graph. J. Pure Appl. Algebra 210(2): 543-550
[3] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), no. 1, 108121.
[4] Lucas, T. G. (2006). The diameter of a zero-divisor graph. J. Algebra 301: 3533-3558.
[5] Anderson, D. F. (2008). On the diameter and girth of a zero divisior graph, (2). Houston J. Math. 34: 361-371.
[6] H. Matsumura, Commutative Ring Theory (Cambridge University Press, 1986).
[7] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison-Wesly, 1969).
[8] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Ann 157(1964)215-218.
[9] R. Y. Sharp, Steps in Commutative Algebra (Cambridge University Press, 1990).
[10] I. Beck, coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[11] T. Tamizh Chelvam and K. Selvakumar, On the genus of the annihilator graph of a commutative ring,Algebra and Discrete Mathematics Volume 24 (2017). Number 2, pp. 191208.
[12] Beck, I. (1988). Coloring of commutative rings. J. Algebra 116:208-226.
[13] Akbari, S., Maimani, H.R., Yassemi, S.(2003). When a zero divisor graph is planar or a complete r-partite graph. J. Algebra 270:169-180.
[14] Bollaboas , B. (1998). Modern Graph Theory. New York: Springer-Verlag.

