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Abstract
Let R be a commutative ring with identity 1. Z(R) be its set of zero-divisors,

and if a ∈ Z(R), then let ann(a) = {d ∈ R|da = 0}. The annihilator graph R is the
(undirected) graph AGC(R) with vertices Z(R)∗ = Z(R) − {0}, and two distinct
vertices x and y are adjacent if and only if ann(x) 6= ann(y). In this article, we
study the graph AGC(R). For a commutative ring R, we show that AGC(R) is
connected with diameter at most two and with girth at most four provided that
AGC(R) has a cycle.
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0.1 INTRODUCTION

Let R be a commutative ring with identity 1, and let Z(R) be its set of zero
divisors. Probably the most attention has been to the zero divisor graph Γ(R)
for a commutative ring R. The set of vertices of Γ(R) is Z(R)∗, and two distinct
vertices x and y are adjacent if and only if xy = 0. The zero-divisor graph was
introduced by David F. Anderson and Paul S. Livingston in [1]. In this article, we
introduce the annihilator graph AGC(R) for a commutative ring R. Let a ∈ Z(R)
and let ann(a) = {d ∈ R|da = 0}. The annihilator graph of R is the (undirected)
graph AGC(R) with vertices Z(R)∗ = Z(R) − {0}, and two distinct vertices x and
y are adjacent if and only if ann(x) 6= ann(y).

In the second section, we show that AGC(R) is connected with diameter at
most two. Also, we determine when AGC(R) is a complete graph, or a star graph.

Let G be a (undirected) graph. We say that G is connected if there is a path
between any two distinct vertices. For vertices x and y of G, we define d(x, y) to be
the length of a shortest path from x to y ((d(x, x) = 0 and d(x, y) = ∞ if there is no
path). Then the diameter of G is diam(G) =sup{d(x, y)|x and y are vertices of G}.
The girth of G, denoted by gr(G), is the length of a shortest cycle in G(gr(G) = ∞)
if G contains no cycles.

A graph G is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph G which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets.

Throughout, R will be a commutative ring with nonzero identity, Z(R) its
set of zero divisors, Nil(R) its set of nilpotent elements. U(R) its group of units.
T (R) its total quotient ring, and Min(R) its set of minimal prime ideals. We say
that R is reduced if Nil(R) = {0}.

0.2 BASIC PROPERTIES OF AGC(R)

In this section, we show that AGC(R) is connected with diameter at most two.
If AGC(R) 6= Γ(R), we show that gr(AGC(R)) ∈ {3, 4}.

Theorem 0.2.1. [3, Theorem 3.13] Let R be a nonreduced commutative ring with
|Nil(R)∗| ≥ 2, and let ΓN(R) be the induced subgraph of Γ(R) with vertices Nil(R)∗.
Then ΓN(R) is complete if and only if Nil(R)2 = 0.

Lemma 0.2.2. Let R be a nonreduced commutative ring with |Z(R)∗| = |Nil(R)∗| ≥
2. Then AGC(R) is disconnected if and only if Nil(R)2 = {0}.

Proof. (⇒) Assume that AGC(R) is disconnected. Suppose Nil(R)2 6= 0. Let
x, y, z ∈ Z(R)∗ and assume that x2 6= 0. Since x is a zero divisor, then there
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is a y ∈ Z(R)∗ such that xy = 0. Therefore y ∈ ann(x) and x ∈ ann(y) , but
x /∈ ann(x). Thus ann(x) 6= ann(y) and hence x − y is an edge of AGC(R), which
is a condradiction. Thus Nil(R)2 = {0}.
(⇐) If Nil(R)2 = {0}.
Case 1. Suppose |Z(R)∗| = |Nil(R)∗| = 2. Let a, b ∈ Z(R)∗ such that ab = 0.
Since Nil(R)2 = 0. Then ann(a) = ann(b). Hence a− b is not an edge in AGC(R).
Case 2. Suppose |Z(R)∗| = |Nil(R)∗| ≥ 3. Let a, b, c ∈ Z(R)∗. Since Nil(R)2 = 0,
then ΓN(R) is complete by Theorem 0.2.1. So that a − b − c − a are adjacent
in Γ(R) [Since|Z(R)∗| = |Nil(R)∗|]. Thus ann(a) = ann(b) = ann(c) and hence
a − b, b − c, c − a are not adjacent in AGC(R).
In both cases AGC(R) is disconnected. 2

The following is an example of disconnected graph.

Example 0.2.3. Let R = Z2[x,y]
<x,y>2 . Then Γ(R) = K3 and AGC(R) = K3.

The following results are true except in the case of Theorem 0.2.2.

Lemma 0.2.4. If x − y is an edge of Γ(R), then x − y is an edge of AGC(R). In
particular P is a path in Γ(R), then P is also a path in AGC(R).

Proof. Given, x − y is an edge of AGC(R), then xy = 0. Therefore y ∈ ann(x)
and x ∈ ann(y). But x /∈ ann(x) and y /∈ ann(y). Therefore ann(x) 6= ann(y).
Hence x − y is an edge of AGC(R). Suppose x − y − z is a path in Γ(R), then
x − y − z is also a path in AGC(R). 2

Lemma 0.2.5. (1) If ann(x) ⊂ ann(y) or ann(y) ⊂ ann(x) for some distinct
x, y ∈ Z(R)∗, then x − y is an edge of AGC(R).
(2) If ann(x) * ann(y) or ann(y) * ann(x) for some distinct x, y ∈ Z(R)∗, then
x − y is an edge of AGC(R).
(3) If dΓ(R)(x, y) = 3 for some distinct x, y ∈ Z(R)∗, then x − y is an edge of
AGC(R).

Proof. (1) Since ann(x) ⊂ ann(y), then there exixts an element a ∈ ann(y) , and
a /∈ ann(x) such that ann(x) 6= ann(y). Hence x − y is an edge of AGC(R).

(2) Suppose ann(x) * ann(y) or ann(y) * ann(x), then ann(x) 6= ann(y). Hence
x − y is an edge of AGC(R).

(3) Let x and y be distinct vertices in Z(R)∗. Given dΓ(R)(x, y) = 3 . Let us
assume that x − a − b − y is a shortest path connecting x and y in Γ(R) where
a, b are distinct vertices in Z(R)∗. We have xa = 0, ab = 0, by = 0. Therefore
a ∈ ann(x) and a /∈ ann(y). This implies that ann(x) 6= ann(y) and hence x − y is
an edge of AGC(R). 2
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Theorem 0.2.6. Let R be a commutative ring. Suppose that dΓ(R)(x, y) = 3 for
some distinct x, y ∈ Z(R)∗. Then there exists a cycle of length 3 in AGC(R) and
at least one edge of C is an edge of Γ(R).

Proof. Given dΓ(R)(x, y) = 3 for some distinct x, y ∈ Z(R)∗. Then there exists a
path from x − a − b − y in Γ(R), where a, b ∈ Z(R)∗ and a 6= b. In this, ann(x) *
ann(y) and ann(y) * ann(x). Then x − y is an edge of AGC(R) and bx 6= 0. So
b /∈ ann(x) and x /∈ ann(b). Therefore ann(x) 6= ann(b). Then x − b is an edge of
AGC(R). Hence C : x− b− y−x is a cycle of length 3 in AGC(R) and at least one
edge of C is an edge of Γ(R). 2

Theorem 0.2.7. Let R be a reduced commutative ring. Suppose that x − y is an
edge of AGC(R) that is not an edge of Γ(R). Then there is a cycle of length 3 in
AGC(R) and at least one edge of C is an edge of Γ(R).

Proof. Suppose that x − y is an edge of AGC(R) that is not an edge of Γ(R).
Then ann(x) 6= ann(y) such that a ∈ ann(x) and a /∈ ann(y). Then ax = 0. Since
R is reduced a 6= x and y is a zero divisor. Then there is b 6= a ∈ Z(R)∗ such that
by = 0. Since R is reduced, so that b 6= y. Hence x − b is an edge of AGC(R), we
have x − y − b − x is a cycle of length 3 in AGC(R) and at least one edge of C is
an edge of Γ(R). 2

Theorem 0.2.8. If x−y is not an edge of AGC(R) for some distinct x, y ∈ Z(R)∗,
then there is a w ∈ Z(R)∗ −{x, y} such that x−w − y is a path in Γ(R) and hence
x − w − y is also a path in AGC(R).

Proof. Given, x − y is not an edge of AGC(R) for some distinct x, y ∈ Z(R)∗.
Therefore ann(x) = ann(y). Then there exists an element w ∈ ann(x) = ann(y)
such that xw = yw = 0. We conclude that x − w − y is a path in Γ(R). Hence by
Lemma 0.2.4 x − w − y is also a path in AGC(R). 2

Theorem 0.2.9. Let R be a commutative ring with |Z(R)|∗ ≥ 2. Then AGC(R) is
connected and diam(AGC(R)) ≤ 2.

Proof. Case 1.If |Z(R)∗| = 2. Let x, y ∈ Z(R)∗. Then xy = 0. Hence x− y is an
edge of Γ(R). By Lemma 0.2.4 x − y is an edge of AGC(R).
Case 2. If |Z(R)∗| > 2. Let x, y, z ∈ Z(R)∗. Suppose xy 6= 0, using Lemma 0.2.4,
we get the result. 2

0.3 When AGC(R) = Γ(R)?

Theorem 0.3.1. [1,Theorem 2.5] Let R be a commutative ring. Then there is a
vertex of Γ(R) which is adjacent to every other vertex if and only if either R = Z2×A
where A is an integral domain, or Z(R) is an annihilator ideal (and hence is prime).
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Theorem 0.3.2. Let R be a commutative ring with identity 1. Then there is a
vertex x ∈ Z(R)∗ such that x is adjacent to all vertices in AGC(R) and hence
AGC(R) = Γ(R) if and only if R = Z2 × A where A is an integral domain.

Proof. (⇒). Since AGC(R) = Γ(R), using Theorem 0.3.1 we get R = Z2 × A.
(⇐). Given, R = Z2 × A where A is an integral domain. Using Theorem 0.3.1,
there is a vertex which is adjacent to every other vertex in Γ(R). Let x ∈ Z(R)∗

such that x is adjacent to all vertices of Γ(R). Clearly ann(x) = Z(R) − {x} for
some x ∈ Z(R)∗, then x is adjacent to every other vertex. Thus ann(y) = {0, x}
for every y − {x} ∈ Z(R)∗. Therefore ann(y) = ann(z) for every z ∈ Z(R)∗ − {x}.
Hence no two elements in Z(R)∗ − {x} are not adjacent in AGC(R) and hence
AGC(R) = Γ(R).

2

Theorem 0.3.3. [4, Theorem 2.8] Let R be a commutative ring. Then diam(Γ(R)) =
2 if and only if either (a) R is reduced with exactly two minimal primes and at least
three nonzero divisors, or (b) Z(R) is an ideal whose square is not {0} and each
pair of distinct zero divisors has a nonzero annihilator.

Theorem 0.3.4. [3, Theorem 3.2] Let R be a reduced commutative ring that is not
an integral domain, and let z ∈ Z(R)∗. Then:

(a) annR(z) = annR (zn) for each positive integer n ≥ 2;

(b) If c + z ∈ Z(R) for some c ∈ annR (z) \ {0}, then annR (z + c) is properly
contained in annR (z) (i.e., annR (c + z) ⊂ annR (z)). In particular, if Z(R) is
an ideal of R and c ∈ annR (z) \ {0}, then annR (z + c) is properly contained in
annR (z).

Theorem 0.3.5. Let R be a reduced commutative ring that is not an integral do-
main. Then the following statements are equivalent.
(a) AGC(R) is complete;
(b) Γ(R) is complete;
(c) R is ring isomorphic to Z2 × Z2.

Proof. (a) ⇒ (b). Let b ∈ Z(R)∗. Suppose that b2 6= a. Since ann(b) = ann(b2),
So that b − b2 is not an edge of AGC(R), a condradiction. Thus b2 = b for each
b ∈ Z(R)∗. Let x, y be two distinct elements in Z(R)∗ . To prove x − y is an edge
of Γ(R). Suppose that xy 6= 0. Since x − y is an edge of AGC(R), we have xy 6= 0.
Now, ann(x(xy)) = ann(x2y) = ann(xy). Thus xy − x is not an edge of AGC(R),
a condradiction. Hence xy = 0 and x − y is an edge of Γ(R). (b) ⇒ (c) It follows
from Theorem 0.3.3.
(c) ⇒ (a) Given, R = Z2 × Z2, which is complete. Hence AGC(R) is complete. 2

Theorem 0.3.6. Let R be a reduced commutative ring that is not an integral domain
and assume that Z(R) is an ideal of R. Then AGC(R) 6= Γ(R) and gr(AGC(R)) =
3.

Page No : 2541



Proof. Let z ∈ Z(R)∗, a ∈ ann(z) − {0}, and h ∈ ann(a + z) − {0}. Then
h ∈ ann(a + z) ⊂ ann(z) by Theorem 0.3.4 and thus ha = 0, since a2 6= 0, we have
h 6= a, and hence h+z 6= a+z, since {h, a} ⊆ ann(z) and z2 6= 0, we have (h+z) and
(a+z) are non zero distinct elements in Z(R)∗. Since (h+z)(a+z) = z2 6= 0, we have
(h+z)− (a+z) is not an edge of Γ(R). Since a2 6= 0 and h2 6= 0, so (h+z)− (a+z)
is an edge of AGC(R). Thus AGC(R) 6= Γ(R) and h− a− (h + z)− h is a cycle of
length 3 in AGC(R) and gr(AGC(R)) = 3. 2

Theorem 0.3.7. Let R be a reduced commutative ring with |Min(R)| ≥ 3(possibly
Min(R)is infinite).Then AGC(R) 6= Γ(R) and gr(AGC(R)) = 3.

Proof. If Z(R) is an ideal of R, then AGC(R) 6= Γ(R) by Theorem 0.3.6. Hence
assume that Z(R) is not an ideal of R. Since |Min(R)| ≥ 3, we have diam(Γ(R)) = 3
by Theorem 0.3.3 and by Theorem 0.2.9 AGC(R) 6= Γ(R). Since R is reduced and
AGC(R) 6= Γ(R), we have gr(AGC(R)) = 3 by Theorem 0.2.7. 2

Theorem 0.3.8. Let R be a reduced commutative ring that is not an integral do-
main. Then AGC(R) = Γ(R) if and only if |Min(R)| = 2.

Proof. Assume that AGC(R) = Γ(R). Since R is reduced commutative ring that
is not an integral domain, |Min(R)| = 2 by Theorem 0.3.7. Conversely, assume
that |Min(R)| = 2. Let p1, p2 minimal prime ideal of R. Since R is reduced,
we have Z(R) = p1 ∪ p2 and p1 ∩ p2 = {0}. Let x, y ∈ Z(R)∗. Assume that
x, y ∈ p1. Since p1 ∩ p2 = {0}, neither x ∈ p2 nor y ∈ p2, and thus xy 6= 0. Since
p1p2 ⊆ p1 ∩ p2 = {0}, it follows that ann(x) = ann(y) = p2. Thus x − y is not
an edge of AGC(R). Similarly if x, y ∈ p2, then x − y is not an edge of AGC(R).
Hence each edge of AGC(R) is an edge of Γ(R), and AGC(R) = Γ(R). 2

Theorem 0.3.9. [2, Theorem 2.2] The following statement are equivalent for a
reduced commutative ring R.
(1) gr(Γ(R)) = 4.
(2) T (R) = F1 × F2, where each Fi is a field with |Fi| ≥ 3.
(3) Γ(R) = Km,n with m,n ≥ 2.

Theorem 0.3.10. Let R be a reduced commutative ring. Then the following state-
ments are equivalent:
(1) gr(AGC(R)) = 4;
(2) AGC(R) = Γ(R) and gr(Γ(R)) = 4;
(3) gr(Γ(R)) = 4;
(4) T (R) is ring -isomorphic to F1 × F2, where each Fi is a field with |Fi| ≥ 3;
(5) |Min(R)| = 2 and each minimal prime ideal of R has at least three distinct
elements;
(6) Γ(R) = Km,n with m,n ≥ 2;
(7) AGC(R) = Km,n with m,n ≥ 2.
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Proof. (1) ⇒ (2). Since gr(AGC(R)) = 4. AGC(R) = Γ(R) by Theorem 0.2.7,
and thus gr(Γ(R)) = 4. (2) ⇒ (3). Assume that AGC(R) = Γ(R) and gr(Γ(R)) =
4. Thus gr(Γ(R)) = 4. (3) ⇔ (4) ⇔ (5) ⇔ (6) are clear by Theorem 0.3.9.
(6) ⇒ (7). Since (6) implies |Min(R)| = 2 by Theorem 0.3.9, we conclude that
AGC(R) = Γ(R) by Theorem 0.3.8, and thus gr(AGC(R)) = Γ(R) = 4. (7) ⇒ (1).
Since AGC(R) is a complete bipartite and m,n ≥ 2. Clearly gr(AGC(R)) = 4 2

Theorem 0.3.11. [2, Theorem 2.4] The following statement are equivalent for a
reduced commutative ring R.
(1) gr(Γ(R)) = ∞.
(2) T (R) = Z2 × F , where each F is a field .
(3) Γ(R) = K1,n for some n ≥ 1.

Theorem 0.3.12. Let R be a reduced commutative ring. Then the following state-
ments are equivalent:
(1) gr(AGC(R)) = ∞;
(2) AGC(R) = Γ(R) and gr(Γ(R)) = ∞;
(3) gr(Γ(R)) = ∞;
(4) T (R) is ring -isomorphic to Z2 × F , where each F is a field;
(5) |Min(R)| = 2 and at least one minimal prime ideal of R has exactly two distinct
elements;
(6) Γ(R) = K1,n with n ≥ 1;
(7) AGC(R) = K1,n with n ≥ 1.

Proof. (1) ⇒ (2). Since gr(AGC(R) = ∞, AGC(R) = Γ(R) by Theorem 0.2.7,
and thus gr(AGC(R)) = ∞. (2) ⇒ (3). Given, AGC(R) = Γ(R) and gr(Γ(R)) =
∞. Thus gr(Γ(R)) = ∞. (3) ⇔ (4) ⇔ (5) ⇔ (6) are clear by Theorem 0.3.11.
(6) ⇒ (7). Since (6) implies |Min(R) = 2| by Theorem 0.3.11, we conclude that
AGC(R) = Γ(R) by Theorem 0.3.8 and thus gr(AGC(R)) = gr(Γ(R)) = ∞. (7) ⇒
(1) Since AGC(R) is a star graph. Thus gr(AGC(R)) = ∞ . 2
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