

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3398

EXAMINE THE CONVERGENCE OF SOFTWARE ENGINEERING'S

MULTI-DOMAIN RESEARCH OPPORTUNITIES

V.VIJAYALAKSHMI

M.Sc Student,

Department of Computer Science,

Rajeswari College of Arts and Science for Women,

Bommayapalayam, Tamil Nadu, India.

Email ID: vijayalakshmivenugopal29@gmail.com

Dr.A.SARANYA

Assistant Professor,

Department of Computer Application,

Rajeswari College of Arts and Science for Women,

Bommayapalayam, Tamil Nadu, India.

Email ID: drsaranyarcw@gmail.com

Abstract

 A significant part of the software

industry is played by Software Engineering

(SE), since almost every industry, business,

and operation requires a specific type of

software. Throughout the course of an

application's lifecycle, software engineering

offers a variety of levels that fulfill various

purposes. The sector first created applications

mostly for home usage and small businesses.

At that point, the accounting data is also

monitored, and the SDLC processes are highly

minimal and controlled. The quantity of

complex applications required by the software

industry revolution clearly results in high-

quality SDLC.

Keywords: Software Engineering, AI, Natural

Language Processing, Data Mining, Big Data.

I. INTRODUCTION

 The path of modern research is

uncertain, particularly in the area of SE [1]. SE

is always expanding and has a totally distinct

dimension when it travels. There is a great

need for a modern software development

forum, and the SE should provide one. Not

even the SDLC's core processing can meet the

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3399

demands of the industry. Technology

convergence contributes to SE's success and

determinism. Big data, AI, NLP, data mining,

and other data collection and processing

technologies are frequently utilized in SE to

deliver timely, valuable results.

The main research facets of SE and how

it will integrate with other interdisciplinary

approaches are highlighted in this study.

Here's how the document is structured: The

overview and fundamentals of software

engineering are covered in Section II. The

significant research contributions previously

made by the researchers are highlighted in

Section III. The convergence of data mining

and SE is discussed in Section IV. This section

went into great detail on how the concepts of

data mining actually helped with the SDLC

after large-scale applications were developed.

In Section V, it is explained how AI helps with

software development for a quick and

economical SDLC.

In a few years, artificial intelligence (AI)

will become a major area of convergence in SE

due to the vast amount of research problems

in the field. The use of Natural Language

Processing (NLP) in text extraction in SE and

multilingual software development is

highlighted in Section VI. Section VII

discusses ontologies and their contributions to

the SE. The use of big data to derive

knowledge from the vast array of SDLC data

is covered in Section VIII. The paper is

concluded in Section IX.

2. SINGLE SOFTWARE ENGINEERING
COMPONENTS:

Figure 1: Single Components

 Over the past fifty years, software

engineering has changed; the term returned to

general usage after it was used in the title of a

conference on the topic organized by the

North Atlantic Treaty Organization in 1968.

Initially, software engineering was developed

as a response to the perceived software crisis

of the 1960s and 1970s, which referred to the

difficulties organizations faced in delivering

high-quality software systems on schedule

and within budget.

The definition of software engineering

(SE) is defined as "the application of

engineering to software" [2]; that is, "the

application of a systematic, disciplined,

quantitative approach to the development,

operation, and maintenance of software." As

the subject has grown, software engineering

(SE) has produced a range of methods for

dealing with issues such software

requirements, design, testing, and

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3400

maintenance. Software development

techniques such as the spiral model, waterfall

model, and incremental development are

successfully used to create high-quality

software on schedule and within budget [3].

Agile software development has grown in

acceptance as a more modern approach to

developing sophisticated systems than the

other more conventional approaches [4].

3. A REVIEW OF THE WORKS:

Figure 2: Review of Literature

The most current uses of data mining in

software engineering have been thoroughly

surveyed by Taylor et al. [5]. They also go

over potential problems with software data

mining and the prerequisites for success. One

of the most comprehensive papers on the topic

is that produced by Halkidi et al. [6]. In-depth

analyses of data mining techniques and their

successful application in software engineering

are featured in their work.

As per Aouf et al. [7], clustering

algorithms can be employed to detect implicit

patterns in data and derive valuable insights.

Software fault detection via association rule

mining was demonstrated by Chang and Chu

[8].Gegick et al. [9] demonstrated the

usefulness of text analysis in fault finding,

whereas Runeson et al. [10] emphasized the

importance of NLP in handling identical flaw

issues. Islam and Brankovic [11] suggested

methods for guaranteeing data mining

privacy.

Mostly, this was accomplished by

adding noisy data to certain areas of the

dataset. However, iterative mining was

proposed by Ma and Chan [12] in their effort

to find overlapping patterns in noisy data. Ma

and Chan were interested in using noisy data

to protect privacy, but Islam and Brankovic

[11] [12] addressed the process of removing

noisy data in order to accomplish the goal of

obtaining meaningful information.

Humans can understand natural

language text with little difficulty. Viliam [13]

discusses the significance of textual processing

on natural language text. Farid talks about

creating natural language writing using the

UML class diagram. The purpose of this work

is to reinforce the perspective of generating

NL specification from class diagrams by

describing several NL based systems. The

study demonstrates how to generate

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3401

semantically valid sentences that explain the

structure of UML string names using

WordNet [14]. To create class models,

Reynaldo employs controlled NL text of

requirements.

 The study presents some preliminary

findings from text parsing for ambiguity. The

document presents the author's research

strategy to incorporate requirement validation

into the RAVEN project [15].

Design models and analysis models in

UML can be generated from natural language

text using an automated program called

UMGAR, developed by Deva Kumar and

colleagues. They have completed this

assignment using Java RAP, Word Net 2.1,

and Stanford parser [16]. By developing the

SPIDER tool, Sascha and colleagues proposed

a round trip engineering approach. Concerns

of requirements-level flaws leaking into the

design and coding phases were discussed in

the article. Developers can create a UML

model by using the behavioral features that

are presented in the NL text [17].

To date, numerous synergies between

software engineering and ontologies have

been presented by researchers. Within the

domains of software modeling [25], software

engineering [24], model transformations [26],

software maintenance [27], software

understanding [28], software methodologies

[29], and software community of practice [30],

for instance, ontologies are suggested for use.

Additionally, methods for reasoning and

modeling over ontologies are suggested using

software engineering tools.

The convergence of ontologies and

software engineering has garnered the interest

of standards groups, leading to ongoing

initiatives in this area. In an effort to create

best practices for utilizing ontologies in

software engineering, Ontology-Driven

Architecture (ODA) was developed by the

Software Engineering Best Practices Working

Group of the W3C [31]. Perhaps the most

significant result to date is the Ontology

Definition Metamodel (ODM), which is

proposed to be the standard for the Object

Management Group (OMG) [32].

 Model-driven engineering principles

enable the software development process to

incorporate ontology languages, or ontologies,

through the use of the ODM standard [33].

Although these numerous efforts demonstrate

many benefits for different aspects of software

and ontology engineering or offer an in-depth

overview of the state of the art in the field [29,

33], none of them employ a comprehensive

software lifecycle framework to assess and

examine the applications of ontologies in

various software engineering domains.

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3402

Figure 3: Data Mining

Data mining has been proposed in

research works as a means to help industrial-

scale software system maintenance,

debugging, and testing because of its capacity

to manage huge volumes of data and its

effectiveness in identifying hidden patterns of

knowledge (Table 1). The findings of the

mining process will help software system

engineers anticipate software failures, extract

and categorize frequent problems, validate

relationships across library categories, analyze

defect data, find recurring patterns in source

code, and ultimately alter the development

process.

Practitioners and researchers in

victimization data mining can generally utilize

the data from software system engineering to

better manage their projects and create

software systems that are of higher quality

that are delivered on schedule and under

budget. Three things are fundamentally

wrong with data mining for software system

engineering [18]: the objective, the input data

that is used, and the mining technology that is

employed. Enhancing code completion tools,

for instance, is another objective [19].

Table 1: Phases of Development Utilizing

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3403

Requirements Elicitation Stage-1:

Obtaining and specifying the

requirements for a software system is called

requirements elicitation. The purpose of

requirements elicitation is to guarantee that a

thorough and precise understanding of the

needs and requirements of the client forms the

foundation of the software development

process. The process of identifying, gathering,

analyzing, and fine-tuning software system

requirements is known as requirements

elicitation.

This crucial task is usually completed at

the start of the project and is a part of the

software development life cycle. Business

owners, end users, and technical specialists

are among the stakeholders involved in

requirements elicitation from across the firm.

Clear, succinct, and well-defined requirements

are the end result of the needs solicitation

process, and they form the basis for the

software system's design and development.

Design Stage-2:

Programmers use software design as a

tool to help with software coding and

implementation by transforming user

requirements into a viable form. This involves

converting the requirements of the client—

which are outlined in the Software

Requirement Specification (SRS) document—

into a format that can be readily implemented

using programming language.

The first stage of the Software Design

Life Cycle (SDLC) shifts focus from the

problem domain to the solution domain and is

known as the software design phase. A system

is viewed as a collection of parts, or modules,

having distinct behaviors and bounds in

software architecture.

Implementation Stage-3:

Software implementation is the process

of incorporating an application into the daily

operations of a business. Choosing a provider

and setting a budget usually mark the start of

the process. The installation of the program,

data migration, and feature testing could be

the next phases. When implementing new

project management, supply chain

management, and enterprise resource

planning tools, businesses employ software

implementation. When a development team

modifies an already-existing application, the

same procedure may be used.

Testing Stage-4:

Software testing is a technique for

evaluating a software program's functionality.

The procedure verifies that the program is free

of bugs and determines whether it actually

satisfies the anticipated criteria. Finding flaws,

defects, or missing requirements in relation to

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3404

the real requirements is the goal of software

testing. Its primary objective is to gauge an

application's or software program's

specifications, functionality, and overall

performance.

5. PROGRAMMING AND SOFTWARE

ENGINEERING AUTOMATION:

The last several years have witnessed a

significant change in the field of software

engineering. Software development should

become more dependable and easier with the

use of artificial intelligence (AI) and software

intelligence technologies. Machine-driven

testing and issue detection tools are the

applications of AI that most effectively

improve software development, according to a

Forrester research paper [20] on the subject

(Fig 1).

The software development industry can

be permanently changed by artificial

intelligence (AI) in the era of machine learning.

Nowadays, the focus is more on choosing the

right data to train a neural network that can

solve a particular problem without the need

for human involvement than it is on process

if-then-else loops. This might revolutionize

how problems are resolved, the resources

employed, the way people think, and even the

idea of what a developer is. We will examine

several methods that artificial intelligence (AI)

can improve software development, as well as

some potential drawbacks and the reasons this

strategy works.

 Fast Prototyping: Traditionally, it takes

months or even years to design a

technology product that meets business

needs. However, machine learning is

speeding up this process by allowing

faculty members who are not as technically

skilled to develop technologies that use

either visual or linguistic interfaces.

 Intelligent Programming Assistants:

Reading documentation and

troubleshooting code take up a significant

portion of developers' work. This time will

be reduced by wise programming

assistants who offer just-in-time assistance

and recommendations, such as pertinent

documents, best practices, and code

samples. Examples of such assistance are

Codota for Java and Kite for Python.

 Automated Analytics & Error Handling:

During the development phase,

programming assistants can automatically

identify and indicate frequent errors based

on prior knowledge. Machine learning can

be used to evaluate system logs after a

technology has been implemented in order

to promptly and even proactively identify

faults. It may even be possible in the future

to modify the software system so that it

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3405

reacts to mistakes automatically and

without the need for human input.

 Automated Code Reworking: Clear code

is essential for long-term maintenance and

teamwork. Large-scale refactoring is a

necessary and perhaps painful need when

businesses modernize their technologies.

The practice of examining code and

automatically boosting its readability and

efficiency will be instinctive to machine

learning.

 Accurate Estimates: It is well known that

software development exceeds both

budget and schedule constraints.

Trustworthy approximations necessitate

in-depth knowledge, contextual awareness,

and acquaintance with the implementation

team. Machine learning will be trained on

historical project data, such as user stories,

feature definitions, estimates, and actuals,

in order to make more precise predictions

about work and expense.

 Making Strategic Decisions: You spend a

lot of time arguing over which options and

products to cut or grade. Business

executives and engineering teams will be

able to identify efforts that may optimize

impact and minimize risk with the help of

an AI solution that has been trained on all

previous development projects and

business aspects. The AI solution will also

evaluate the performance of current apps.

Figure 4: AI for SDLC

High Interest:

 Examine Technical Coding.

 Develop test cases proactively and

suggest a Testing Strategy.

 Discover faults and target testing on the

area’s most likely to contain flaws.

 Acknowledge graphics and user interface

 Apply machine learning to forecast test

results in the future.

 Reduce business risk and expand the

Scope of Testing.

Medium Interest:

 Evaluate trends between Projects.

 Determine the Requirements.

 Offer options for Reusing.

 More Comprehensive Specifications.

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3406

Low Interest:

 Improve distribution Protocols.

 Reduce Flaws.

 Conduct log analysis to improve Traffic

Routing.

6. NLP IN CONJUNCTION WITH
SOFTWARE ENGINEERING:

Figure 5: NPL in Conjunction with Software

Engineering

The phases of the Software

Development Life Cycle are as follows. These

stages include instructions for creating

software packages. Natural language

processing can be used in all relevant Software

Development Life Cycle sections. Its further

accurate application occurs when the

component or activity's artifacts are text files.

For jobs involving natural language

processing, plain text may be utilized as input.

Textual generation basically refers to all the

processes involved in human interpretation of

the material.

The assumption that every requirement

for a future system notably exists in textual

type is not supported by the evidence, as

implied by a number of NLP-based

requirements capture approaches [21]. While

it is true that some data is naturally presented

as text—typically, process descriptions or pre-

established procedures—a much greater

amount of information can be found in

diagrams or in the client's physical

environment.

It is obviously unrealistic to rely solely

on the text for information or to expect the

client to reduce all of his or her requests to

textual form. Tools to scan, search, browse,

and classify that text undoubtedly could be

helpful in creating a comprehensive and

precise statement of wishes, assuming,

however, that the requirements definition task

is being carried out by an intelligent human

and that a significant body of the machine-

readable text is accessible [22]. This may not

necessarily indicate that a free text is

automatically understood.

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3407

6. SEARCH ONTOLOGIES:

Figure 6: Search Ontologies

Domain knowledge can be formalized

through the use of ontologies. The main

application of ontologies is knowledge

exchange, which is done through knowledge-

based applications. The main target audience

for ontology development is AI experts who

are familiar with a range of methods from the

field of AI. However, a sizable portion of the

software business is unaware of this

information. Many suggestions have been

made to use ontologies in software

engineering to close the knowledge gap

between practitioners and AI approaches.

Ideas include using UML diagrams

while creating ontologies. As a matter of fact,

the university-developed recipient software

includes a pane that clearly specifies how

UML diagrams are used in ontology

construction. From the created ontology, a

UML diagram will be created using this

practicality. Nevertheless, It is also clear that

the visualization of semantic ideas derived

from describe reason and other concepts

found inside the semantic web languages is

unaffected by software engineering

approaches alone.

7. MASSIVE DATA PERTAINING TO

SOFTWARE ENGINEERING:

Figure 7: Massive Data Pertaining

Software packages manage ever-

growing datasets in addition to offering novel

algorithms, state-of-the-art system

architectures, and system structures ready to

tackle each of the five Vs of massive data [23].

The time has come for software to leverage

knowledge extracted from enormous amounts

of data, which include user profiles, coding

patterns, engages in, software source code,

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3408

issues from retracing systems, caution and

updates, errors, and all types of logs.

The challenges facing software

engineering research in this area include

creating new tools that collect data from

sensor-based systems and employ data mining

and machine learning approaches to reveal

knowledge that is not available to individuals.

But in order to improve software quality, it

must be brought to people's attention and felt.

To better understand what users want from

systems, this involves studying about the

creation and decommissioning software

structures, freely available parts, and

consumers patterns, choices, and conduct. It

also involves learning about tools and

techniques for spotting chances for unique

feature and performance upgrade. These

include using log files (big, gigabytes, or

updated very quickly) returned from multiple

complex distributed systems and

infrastructures to identify the specific root

causes of failures and system halts10;

obtaining execution information on

indications and shifts in context that trigger

adaptations; and executing predicting and

predictive analytics for assertive strategy and

preparation of modification acts.

8. CONCLUSION

This paper makes a compelling case for

the collaboration of software engineering with

other fields in order to create better software

and applications. New text processing

techniques are required due to the growing

amount of data related to software

development. Technologies like big data and

data mining will offset the need for text

processing. The fields of AI and NLP are those

that can help SE create fast, error-free

application development. The research

collaborations, difficulties, and future

directions in various disciplines are described

in this publication.

REFERENCE

[1] Xu, Haiping, Future Research
Directions of Software Engineering and
Knowledge Engineering. International
Journal of Software Engineering and
Knowledge Engineering. 415-421, 2015.

[2] Abran, A., Moore, J.W., Bourque, P.,
Dupuis, R., Tripp, L.L.: Guide to the
Software Engineering Body of
Knowledge, IEEE, 2004

[3] Bhalerao, Shilpa & Puntambekar,
Devendra & Ingle, Maya, Generalizing
Agile Software Development Life Cycle.
International Journal on Computer
Science and Engineering. 1, . 2009.

[4] Agile Manifesto,
http://agilemanifesto.org

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3409

[5] Taylor, Q.and Giraud-Carrier, C.
“Applications of data mining in
software engineering”, International
Journal of Data Analysis Techniques
and Strategies, Volume 02, Issue 03,
Page No (243- 257), July 2010.

[6] M. Halkidia, D. Spinellisb, G.
Tsatsaronisc and M.Vazirgiannis,
“Data mining in software engineering”,
Intelligent Data Analysis 15, Page No
(413–441), 2011.

[7] M. Aouf, L. Lyanage, and S. Hansen,
“Critical review of data mining
techniques for gene expression
analysis,” International Conference on
Information and Automation for
Sustainability (ICIAFS) 2008, Page No
(367-371), 2008.

[8] C. CHANG and C. CHU, “Software
Defect Prediction Using Inter
transaction Association Rule Mining”,
International Journal of Software
Engineering and Knowledge
Engineering, Volume 19, Issue 06, Page
No (747-764), September 2009.

[9] M. Gegick, P. Rotella and T. Xie,
“Identifying security bug reports via
text mining: an industrial case study”,
Mining Software Repositories (MSR),
7th IEEE Working Conference, Page No
(11– 20), 2010.

[10] P. Runeson, and O. Nyholm,
“Detection of duplicate defect reports
using natural language processing”,
Software Engineering, 2007. ICSE 2007.
29th International Conference, Page No
(499 – 510), 2007.

[11] M. Z. Islam and L. Brankovic,
“Detective: a decision tree based
categorical value clustering and
perturbation technique for preserving
privacy in data mining,” Third IEEE
Conference on Industrial Informatics
(INDIN), Page No (701-708), 2005.

[12] P. C. H. Ma and K. C. C. Chan, “An
iterative data mining approach for
mining overlapping coexpression
patterns in noisy gene expression
data,” IEEE Trans. NanoBioscience,
Volume 08, Issue 03, Page No (252-258),
September 2009.

[13] V. Simko, P. Kroha and P. Hnetynka,
“Implemented domain model
generation”, Technical Report,
Department of Distributed and
Dependable Systems, Report No. D3S-
TR-2013-03, 2012.

[14] F. Meziane, N. Athanasakis and S.
Ananiadou, “Generating Natural
Language Specifications from UML
Class diagrams”, Requirement
Engineering Journal, Springer-Verlag,
London, vol. 13, no. 1, pp. 1-18, 2013.

[15] R. Giganto, “Generating Class Models
through Controlled Requirements”,
New Zealand Computer Science
Research Conference (NZCSRSC),
Christchurch, New Zealand, 2008.

[16] G. Lu, P. Huang, L. He, C. Cu and X. Li,
“A New Semantic Similarity
Measuring Method Based on Web
Search Engines”, WSEAS Transaction
on Computer, ISSN: 1109-2750, vol. 9,
Issue 1, 2010.

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3410

[17] S. Konrad and B. H. C. Cheng,
“Automated Analysis of Natural
Language Properties for UML Models”,
[Online available], 2010.

[18] T. Xie, S. Thummalapenta, D. Lo and C.
Liu, Data mining for software
engineering, Computer 42, 55–62, 2009.

[19] Marcel Bruch, Martin Monperrus, Mira
Mezini. Learning from Examples to
Improve Code Completion Systems. In
Proceedings of the 7th joint meeting of
the European Software Engineering
Conference and the ACM Symposium
on the Foundations of Software
Engineering, ACM, 2009.

[20] https://reprints.forrester.com/#/assets
/2/108/'RES121339'/reports

[21] M Saeki, H Horai, H Enomoto,
"Sofitware Development Process from
Natural Language Specification", 1lth
International Conference on Software
Engineering, 1989.

[22] P Loucopoulos P & R E M Champion,
"Concept Acquiisition and Analysis for
Requirements Acquisition", IEE
Software Engineering Journal, (2) 1990.

[23] Kalbandi, Ishwarappa & Anuradha, J,
A Brief Introduction on Big Data 5Vs
Characteristics and Hadoop
Technology. Procedia Computer
Science, 2015.

[24] Seok Won Lee and Robin A. Gandhi.
Ontology-based Active Requirements
Engineering Framework. In Proc. of the
12th Asia- Pacific Software Eng. Conf.
481–490, 2005.

[25] Holger Knublauch. Ontology-Driven
Software Development in the Context
of the Semantic Web: An Example
Scenario with Protege/OWL. In Proc.
of 1st Int’l WSh on the Model-Driven
Semantic Web, 2004.

[26] Gerti Kappel, Elisabeth Kapsammer,
Horst Kargl, Gerhard Kramler, Thomas
Reiter, Werner Retschitzegger, Wieland
Schwinger, and Manuel Wimmer.
Lifting Metamodels to Ontologies: A
Step to the Semantic Integration of
Modeling Languages. In Proc. of the
ACM/IEEE 9th Int’l Conf. on Model
Driven Eng. Languages and Sys., pages
528–542, 2006.

[27] Christoph Kiefer, Abraham Bernstein,
and Jonas Tappolet. Analyzing
Software with iSPARQL. In Proc. the
3rd ESWC Int’l WSh. on Semantic Web
Enabled Software Eng., 2007.

[28] Ren´e Witte, Yonggang Zhang, and
Juergen Rilling. Empowering Software
Maintainers with Semantic Web
Technologies. In Proc. of the 4th
European Semantic Web Conference,
pages 37–52. Springer, 2007.

[29] C´esar Gonz`alez-P`erez and Brian
Henderson-Sellers. An Ontology for
Software Development Methodologies
and Endeavours, volume Ontologies
for Software Engineering and Software
Technology, pages 123–151. Springer,
2006.

http://www.skrgcpublication.org/

http://www.ijcsjournal.com Volume 12, Issue 1, No 2, 2024. ISSN: 2348-6600

Reference ID: IJCS-494 PAGE NO: 3398-3411

All Rights Reserved ©2024 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
 http://www.skrgcpublication.org/ Page 3411

[30] Anupriya Ankolekar, Katia Sycara,
James Herbsleb, Robert Kraut, and
Chris Welty. Supporting Online
Problem-solving Communities with the
Semantic Web. In Proc. of the 15th Int’l
conf. on WWW, pages 575–584, 2006.

[31] P. Tetlow, J. Z. Pan, D. Oberle, E.
Wallace, M. Uschold, and E. Kendall.
Ontology Driven Architectures and
Potential Uses of the Semantic Web in
Systems and Software Engineering.
W3C Working Draft, 2006.

[32] OMG ODM. Ontology Definition
Metamodel, 2006.
http://www.omg.org/cgibin/doc?ad/
06-05-01.pdf.

[33] Hans-J¨org Happel and Stefan Seedorf.
Applications of Ontologies in Software
Engineering. In Proc. of the Int’l WSh.
on Semantic Web Enabled Software
Engineering, 2006.

http://www.skrgcpublication.org/
http://www.omg.org/cgibin/doc?ad/06-05-01.pdf.
http://www.omg.org/cgibin/doc?ad/06-05-01.pdf.

