

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 1

RESEARCH PROSPECTS FOR APPLYING DATA MINING

METHODS IN SOFTWARE ENGINEERING LIFECYCLE

S. Sucithra

Student,
Department of Computer Science,

Rajeswari College of Arts and Science for Women,
Villupuram, Tamil Nadu, India.

Abstract

oftware industry is a field of study
humanized in the software
engineering. Every day, people

come up with new ways to do things and new
frameworks. For software engineering to
continue, it must be able to adapt and work
with things. Software engineering uses natural
language processing, data analysis, machine
learning, and intelligence. Since people want
software, we need to conduct a lot of research
on software development data. It's really
challenging to handle a large quantity of data
without being able to process it and look at the
amount of data. Data mining methods are
used to enhance the creation of software. This
study examines the way of text mining,
clustering, and classification techniques are
used. This shows what these data mining
methods can do help enhance the life cycle of
software development. Data mining methods
include important for improving the efficiency
of software development and effective. The
paper talks about the uses and results of
classification, clustering, and text mining
methods, in data mining.

Keywords: Software engineering, text mining,
SDLC, data mining, clustering, and
classification.

1. Introduction
 The software industry is a field that
really a important for the software industry. It
is always changing because new methods and
algorithms are added. This implies that the
fundamental methods of performing tasks in
software engineering must undergo change.
The software engineering field must adapt to
research areas. There is a problem. There is
much data available now, and the systems we
use to make software are really complicated.
This causes many errors. Costs a lot of money.
 The software engineering field is still
evolving. This is a significant challenge for the
software industry and software engineering
field. These problems need to be addressed.
Therefore, software engineering must change.
It must include ideas from areas such as
artificial intelligence, big data, machine
learning, and data mining.
 Data mining is important in this
context. It helps in software development at
many stages. It provides information that
makes things more efficient and helps us

 S

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 2

make good decisions. Data mining is crucial
for this purpose. This is more helpful than in
some areas of research. Software engineering
and data mining are key, to making things
better.
 This study shows us the bad things
about using data mining in software
development. This document is classified into
five sections. Section I is the outlines of the
purpose a study. Section II is important
because it discusses the usefulness of software
development through text mining.It tells us
the way of text mining helps with security
analysis by finding bugs in versions, creating
test cases, and making changes to versions.
Section III presents the testing's outcomes
methods that use mining techniques. These
methods are important. Section IV discusses
how clustering and classification algorithms
affect parts of the software life cycle. The
study concludes by examining all these ideas.
This shows that we need to continue research
to fix the problems we have now and to make
mining methods work better with software
engineering. Mining methods must be made a
part of software engineering.

Text Mining Techniques in Development
Phases:
 The thesis examined the use of text
classification techniques for software
requirements that are used in companies and
their applications. It attempted various
methods to determine the most effective
approach. The main goal of the thesis was to
see how well the classifier could figure out
what kind of requirement each statement was,

every time it looked at one. A study
introduced an arrangement to find
configuration errors in a business software
system. The researchers examined bug reports
and used this information to create a new
model. This model helps determine the type of
bug. This could be due to a configuration bug
or some other issue. If it is a configuration
bug, the development team fixes it. They used
methods to classify the bugs and select the
important features. The model is based on a
summary of the language used in bug reports,
as shown in Figure 1. The configuration bugs
are. The development team then addresses the
configuration bugs. In this way, we can sort
bugs into configuration bugs or other types of
bugs. The development team addresses bugs
that are identified as configuration bugs.

Fig 1.The suggested approach for predicting
bugs

 To stop the software from failing and to
make the work easier, our algorithm finds the
bug label. Tell the team about it. Someone

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 3

came up with A method was developed to
identify security bugs in software by
analyzing the text. This is important for
people who use the software and for those
who create it. Bugs that are related to security
are usually called security-related bugs (SRB).

Sometimes, people make mistakes and
call them something else, such as BSRB. When
this happens, it can cause problems for the
entire software system. The software can be
messed up because of these mistakes. Our
algorithm attempts to identify these Security-
Related Bugs so that the team can fix them
and improve the software. The incorrectly
labeled security bugs were fixed. The labels
are now sorted out in a way that understands
what people mean when they write things.
This is done by looking at the words people
use, which is called text mining. The security
bugs are labeled correctly now.
 The Historical Information for Smell
detection method also known as HIST uses
information about how things changed over
time to find problems in code. It looks for five
problems: Blob, Parallel Inheritance, Feature
envy, shotgun surgery, and divergent change.
Historical Information for Smell detection was
tested in two studies. These studies used code
projects and different ways to analyze the
code.
 The results showed that Historical
Information to Smell detection was able to
find problems between 58% and 100% of the
time. However, when it came to being precise,
Historical Information for Smell detection was
correct between 72% and 86% of the time.

Fig 2. HITS model

 Shah and Pfahl conducted research on
mapping to improve software development.
They examined software development data
from a few places, such as the things that
people wrote in natural language of the
remarks in a design documents' source code
and demands for changes to be made to the
software.

Software Testing Mining Techniques
 The mining data is effective in finding
patterns and things that are similar in test
cases. It can also be applied to lower of the
quantity of necessary test instances. The main
thing that the reduction of test suites by the
data mining is to look at what you put into the
software and what you get out of it. This helps
to get rid of test cases that are not needed or
that do not work.
 Data mining techniques are great
because they are smart and they get the job
done quickly. They can also be difficult to
understand. The thing is, how well data
mining works depends on how examples you
have to teach it with.

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 4

 Using data mining approaches, test
suites were reduced and divided into three
primary categories:

 Classification
 Cluster Analysis
 Mining Frequent Itemset (MFI)

 Each category has one or more
subcategories. Figure 3 shows the proposed
classification.

Fig 3.Testing methods for mining

 Khan and his team proposed a way to
group things to reduce or get rid of extra test
documents. We do not have tests to begin
with; therefore, it is very important to make
the test suite smaller when testing software.
The test suite we have is very large. It has
many extra test cases, as the people who made
it explained. The test suite is too large because
it has many test cases; thus test suite
minimization is necessary for software testing,
and the k-means clustering technique that
Khan and his team proposed can help with
that. The test suite size can be a large because
of these factors. This includes the fact that
program variables can have many values.
Also when the requirements of a program

change people usually add test cases to the
test suite.
 The four groups in a test cases, which
are called C1, C2, C3 and C4. Using this
method, one test case can be selected from
each test case group. This means that a test
suite with four test cases can be created, which
is a relatively small test suite. We were able to
lower the quantity of test cases.
 With 100% call coverage by
approximately 80%. This is because we used
our prediction techniques. The prediction
technique helped us lower the quantity of test
cases. We had many test cases. Our prediction
technique helped minimize these issues.
Prediction technique to make this happen to
the test cases, with 100% call coverage.
 Researchers used data mining
techniques, such as clustering and
classification, to find ways to reduce the
number of test cases. Data mining techniques,
such as clustering and classification, have
been helpful. Some studies, such as those in
references 12 and 13, showed that the number
of test cases can be reduced. This made the
testing process faster and more efficient than
the previous version. It also saves money and
time by reducing the number of test cases that
must be repeated. Data mining techniques,
like clustering and classification made a
difference in this area.
 Paper looked at test data to find
patterns using a way of searching through
data. The first step was to determine whether
the test parameters actually mattered to the
results. They then cleaned the data, removed
the bad data, and spread out the remaining

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 5

data to take a closer look. Chantrapornchai et
al. [14] introduced a method to reduce the
number of test cases for black-box and white-
box testing using K-means clustering
algorithms. They used a called code coverage
to analyze the variables and reduce the
number of variables before clustering. The
code coverage helped to lower the number of
variables.
 Chantana Chantrapornchai and others
reduced the test cases from 648 to 486. Then to
324 for K-means black box testing.The K-
means clustering algorithms maintained the
code coverage for the test cases.The test case
reduction method used by Chantana
Chantrapornchai and others is useful, for K-
means black box testing and K-means white
box testing.

Clustering and classification used in
Software Engineering:
 Dulal Chandra Sahana gives us some
useful information about software defect
prediction mining algorithms. He looks at a
lot of mining algorithms to see which ones are
good, at predicting defects. He found that the
Naive Bayes and Logistic algorithms
performed the best overall. Dulal Chandra
Sahana tells us that these two algorithms have
the performance when it comes to predicting
software defects.
 The people who did this study only
looked at a ways to classify things. They
compared Decision Tree, Bayesian, Rule-
Based and Logistic Regression methods. Some
organizations, including the MGF, used
information from the NASA MDP library to

train their systems. This library contains data
that can be used by everyone. The NASA
MDP repository has 12 sets of data that can be
used for studies. They have these 12 datasets
in the NASA MDP repository.

Table 1: Accuracy among the Classifies

 Ashish Kumar and others try to find
software design patterns by using software
metrics and techniques that involve
classification (Fig 4). Our research was
conducted in two parts. First, we collected
data based on metrics. We then attempted to
identify software design patterns and used
software metrics to create datasets and train
classifiers.
 We propose to find design patterns in
software using machine learning methods.
These methods analyze datasets based on
metrics. We used software metrics and
machine learning to identify software design
patterns. The new method was tried out with
three open-source software programs:
JHotDraw, QuickUML, and J Unit. The results

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 6

of JHotDraw, QuickUML, and JUnit were then
examined closely.

Fig 4 Model of Software Design Pattern

 One problem with their approach is
that they did not get to know every type of
design pattern that appears in the software
code. When they were trying to determine the
pattern of something, the people who wrote
this method looked at classes of design
patterns. They should have looked at design
patterns to perform the job. The method they
used had a problem because it did not look at
every class of design patterns that can be
found in software source code.
 Shin and Williams looked at how they
could use code-churn measurements and
complexity in fault-prediction models to
predict vulnerabilities. They conducted a
study on Mozilla Firefox to determine
whether this would work. They used many
metrics in their study. There are 18 quality
metrics, five code churn metrics, and a statistic
about past faults. They wanted to determine
whether these metrics could help predict
vulnerabilities in Mozilla Firefox and
attempted to classify the files to determine
which files are defective and vulnerable.

 The people who did this work said that
all the methods they tried yielded similar
results. The models that predict faults and
vulnerabilities in files performed similarly in
terms of predicting vulnerabilities. They were
approximately 83 percent of the time and
accurate approximately 11 percent of the time.
This is interesting because defective source
code files are much more common than source
code files. It was approximately seven times
more common. The fault and vulnerability
prediction models and the vulnerability
prediction models are really the thing and
they both do a pretty good job of finding
defective and vulnerable files, specifically
vulnerability prediction and fault and
vulnerability prediction models. The authors
looked at the results. They believe that models
that predict faults and are based on the usual
measurements can also be used to predict
vulnerabilities.
 The authors believe that more work
needs to be done on these fault prediction
models to improve their ability to predict
vulnerabilities. This means that the models
should be good at identifying vulnerabilities
and not providing too many false warnings.
The models should also be able to find most of
the vulnerabilities that're there which is what
the authors mean by a high recall, for
vulnerability prediction especially for the fault
prediction models.
 The Naïve Bayes classifier was used by
Zhu et al. To develop a design for the software
process model. They used the Naïve Bayes
classifier method to make models, from the
software development logs.

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 7

The Naïve Bayes classifier method does a
things. First, it provides a label for each action
performed. Then it uses something called k-
means clustering algorithms to get the
meaning of the things.
 The Naïve Bayes classifier approach
does this in two steps to get a record of what
is done. In this step, two types of learning are
used: one where it is told what to do and one
where it figures things out on its own. This
study aims to find a way to calculate harmonic
averages to determine the accuracy and
performance of a classifier in remembering
things.
 It also discusses a method for
determining the number of groups when we
do not know what we are looking for by using
something called second derivatives. To be
fair, the people conducting this study checked
how well a classifier worked. This can be seen
in a paper called.

Fig5.Selecting the Number of Clusters

 Fig 6.Effect of optimal cluster number

 To undertake knowledge discovery,
Chandrasekaran et al. [20] investigated the
comparative results of applying five mining
algorithms to combination testing. The
findings of the experiment specifically show
that data mining algorithms act similarly to
generic software applications. This implies
that data mining techniques may benefit from
the application of CT. Table 2 and Figures 7
and 8 show the comparison results for the two
models.

Table 2: Branch Coverage Results of T-way
Testing

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 8

Fig 7.Growth of Branch Coverage

Table 3: Mutation Coverage Results of T-way
Testing

Fig 8.Growth of Mutation Coverage

Conclusion
 Data mining is really important in
software engineering these days. People are
doing lots of research on this. They have
found many problems that need to be
solved.They have also come up with questions
that need to be answered. This study is about
how data mining affects the process of making
software. Data mining techniques are very
helpful in making the software development
process better and cheaper.They also help
reduce the time it takes to make software and
the costs that keep coming up.This study talks
about the problems that researchers have
found and what they have learned from using
data mining techniques like text mining,
clustering and classification in software
engineering.Data mining techniques, like text
mining and classification are used a lot in
software engineering to make things better.
This study will be very helpful to researchers
in matching the results and architecture of
various proposed studies and sticking with
their research.

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 9

References

1. Dawid Zima, Modern Methods of
Software Development, Task Quarterly
19, No 4, pp. 481–493, 2015.

2. Max Bramer, Principles of Data Mining,
Second Edition, Springer, 2013.

3. JapaSwadia, A Study of Text Mining
Framework Automated Classification
of Software Requirement sin Enterprise
Systems, Master thesis, Arizona State
University, May 2016.

4. X. Xia,Automated Configuration Bug
Report Prediction Using Text Mining,
IEEE 38th Annual International
Computers, Software and Applications
Conference, 2014.

5. M. Gegick, P. Rotella, and T. Xie,
"Identifying security bug reports via
text mining: An industrial case study,"
2010 7th IEEE Working Conference on
Mining Software Repositories (MSR
2010), Cape Town, 2010, pp. 11-20.

6. F. Palomba, G. Bavota, M. D. Penta, R.
Oliveto, D. Poshyvanyk and A. De
Lucia, "Mining Version Histories for
Detecting Code Smells," in IEEE
Transactions on Software Engineering,
vol. 41, no. 5, pp. 462-489, 1 May 2015.

7. Shah, Faiz A., & Pfahl, D. “Evaluating
and Improving Software Quality Using
Text Analysis Techniques - A Mapping
Study.” REFSQ Workshops (2016).

8. A. Saifan, Ahmad, EmadAlsukhni,
HanadiAlawneh, AyatAL_Sbaih,"Test
case reduction using data mining
technique." International Journal of

Software Innovation (IJSI) 4.4 (2016):
56-70.

9. Raamesh, Lilly, and G. V. Uma,
"Reliable mining of
automaticallygenerated test cases from
software requirements
specification(SRS)." arXiv preprint
arXiv:1002.1199 (2010).

10. Keyvanpour, Mohammad Reza,
HajarHomayouni, and
HosseinShirazee, "Automatic software
test case generation: An analytical
classification framework." International
Journal of Software Engineering and Its
Applications 6.4 (2012): 1-16

11. Khan, Fayaz Ahmad et al. “An Efficient
Approach to Test Suite Minimization for
100% Decision Coverage Criteria using
K-Means Clustering Approach.” (2015).

12. Ilkhani, Ali, &Abaei, Golnoush. (2010).
Extraction test cases using data mining
reduce testing costs. 620 - 625.

13. B.Subashini,D.JeyaMala, Reduction of
Test Cases Using Clustering Technique,
International Journal of Innovative
Research in Science, Engineering and
Technology Volume 3, Special Issue 3,
March 2014

14. H. Wang, L. Bai, M. Jiezhang, J. Zhang
and Q. Li, "Software Testing Data
Analysis Based on Data Mining," 2017
4th International Conference on
Information Science and Control
Engineering (ICISCE), Changsha, 2017,
pp. 682-687.

15. Chantrapornchai &Kinputtan, K.
&Santibowanwing, A.. (2014). Test case

www.ijcsjournal.com Volume 14, Issue 1, No 03 2026 ISSN: 2348-6600

REFERENCE ID: IJCS-586 PAGE NO: 084-093

All Rights Reserved ©2025 International Journal of Computer Science (IJCS Journal)

Published by SK Research Group of Companies (SKRGC) - Scholarly Peer Reviewed Research Journals
www.skrgcpublication.org Page 10

reduction case study for white-box k-
boblack-box using data mining.
International Journal of Software
 Engineering and Applications.
 8. 319-338.
10.14257/ijseia.2014.8.6.25.

16. Dulal Chandra Sahana, Software Defect
Prediction Based on Classification Rule
Mining, Master’s thesis, National
Institute of Technology Rourkela, 2013.

17. Dwivedi, Ashish, and Anand Tirkey,
(2018). Software design pattern mining
using classification-bases techniques.
Front. Comput. Sci.

18. Shin, Y. Wil;liams, L. 2013. Can
traditional fault prediction models be
used for vulnerability prediction?
Empir.Softw. Eng. 18, 1 (2013), 25–59.

19. RUI ZHU et al, Automatic Real-Time
Mining Software Process Activities From
SVN Logs Using a Naive Bayes
Classifier, IEEE Access, October 21, 2019.

20. JaganmohanChandrasekaran et al.[],
Applying Combination Testing to Data
Mining Algorithms, 10th IEEE
International Conference on Software
Testing, Verification and Validation
Workshops.

