A NOTE ON COMPLEMENT OF THE REDUCED NON-ZERO COMPONENT GRAPH OF FREE SEMI-MODULES
International Conference on Algebra and Discrete Mathematics (ICADM-2020) on 24 to 26, June 2020, Department of Mathematics, DDE, Madurai Kamaraj University, Tamil Nadu, India. International Journal of Computer Science (IJCS) Published by SK Research Group of Companies (SKRGC)
Download this PDF format
Abstract
In this paper, we discuss about certain graphs from vector spaces and graph from semimodules. More specifically, we present about the complement of the reduced non-zero component graph.... Download PDF...
References
[1] D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[4] L. W. Beineke and B. J. Wilson, Selected Topics in Graph Theory (Academic Press Inc., London, 1978).
[5] A. K. Bhuniya and S. Maity, On the component graphs of finitely generated free semimodules, htts://www.researchgate.net/ publication/326440380, DOI: 10.13140/RG.2.2.26093.90089.
[6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Monterey: Wadsworth and Brooks/Cole, 1986).
[7] A. Das, Non-zero component graph of a finite dimensional vector space, Comm. Algebra 44(9) (2016) 3918-3926.
[8] A. Das, On non-zero component graph of vector space over finite fields, J. Algebra Appl. 16(1) (2017) # 1750007(10 pages) DOI: 10.1142/S0219498817500074.
[9] S. Folders and P. L. Hammer, Split graphs, In: Proc. 8th Southeastern Conf. on Combinatorics, Graph Theory and Computing, ed. F. Koffman et al, Baton Rouge: Louisiana State Univ. (1977) 311-315.
[10] J. S. Golan, Semirings and their Applications (Kluwer Academic Publishers, 1999).
[11] Q. Y. Shu and X. P. Wang, Bases in semilinear spaces over zerosumfree semirings, Linear Algebra Appl. 435 (2011) 2681-2692.
[12] T. Tamizh Chelvam and K. Prabha Ananthi, On the genus of graphs associated with vector spaces, Accepted for publication in J. Algebra Appl., DOI: 10.1142/S0219498820500863.
[13] Y. J. Tan, Bases in semimodules over commutative semirings, Linear Algebra Appl. 443 (2014) 139-152.
[14] D. B. West, Introduction to Graph Theory (Prentice Hall, 2001).
Keywords
phrases. Semirings, connected, Modules.