Results on annihilator graph of a commutative Ring
International Conference on Algebra and Discrete Mathematics (ICADM-2020) on 24 to 26, June 2020, Department of Mathematics, DDE, Madurai Kamaraj University, Tamil Nadu, India. International Journal of Computer Science (IJCS) Published by SK Research Group of Companies (SKRGC)
Download this PDF format
Abstract
Let R be a commutative ring with identity 1. Z(R) be its set of zero-divisors, and if a .... Download PDF...
References
[1] Anderson, D. F., Livinston, P.S. (1999). The zero divisor graph of a commutative ring. J. Algebra 217: 434-447.
[2] Anderson, D. F., Mulay, S.B. (2007). On the diameter and girth of a zerodivisor graph. J. Pure Appl. Algebra 210(2): 543-550
[3] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), no. 1, 108121.
[4] Lucas, T. G. (2006). The diameter of a zero-divisor graph. J. Algebra 301: 3533-3558..
[5] Anderson, D. F. (2008). On the diameter and girth of a zero divisior graph, (2). Houston J. Math. 34: 361-371.
[6] H. Matsumura, Commutative Ring Theory (Cambridge University Press,1986).
[7] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison-Wesly, 1969).
[8] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Ann 157(1964)215-218.
[9] R. Y. Sharp, Steps in Commutative Algebra (Cambridge University Press,1990).
[10] I. Beck, coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[11] T. Tamizh Chelvam and K. Selvakumar, On the genus of the annihilator graph of a commutative ring,Algebra and Discrete Mathematics Volume 24 (2017). Number 2, pp. 191208.
[12] Beck, I. (1988). Coloring of commutative rings. J. Algebra 116:208-226.
[13] Akbari, S., Maimani, H.R., Yassemi, S.(2003). When a zero divisor graph is planar or a complete r-partite graph. J. Algebra 270:169-180.
[14] Bollaboas , B. (1998). Modern Graph Theory. New York: Springer-Verlag.
Keywords
Annihilator Graph; diameter; girth; Zero divisor Graph