(U, V) - LUCAS POLYNOMIAL AND BI-UNIVALENT FUNCTION
International Journal of Computer Science (IJCS) Published by SK Research Group of Companies (SKRGC)
Download this PDF format
Abstract
In this paper, by using Lucas polynomials, developed a new family of bi-univalent functions D_? (s,t,z). Also, obtained (U, V) - Lucas polynomial, coefficient estimates and Fekete -Szegö inequalities for this new class D_? (s,t,z). Mathematics Subject Classification 2010: 30C45.
References
- Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, 8 (2020), pp. 783.
- S. Altinkaya and S. Yalçin, On the (p,q) Lucas polynomial coefficient bounds of the bi-univalent function class, Boletín de la Sociedad MatemÂt’atica Mexicana, 25 (2019), pp. 567–575.
- S. Altinkaya and S. Yalçin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, (2015), pp. 1–5.
- A. Amourah and M. Illafe, A Comprehensive subclass of analytic and Bi-univalent functions associated with subordination, Palestine Journal of Mathematics, 9(2020), pp. 187–193.
- D. Brannan and J. Clunie, Aspects of contemporary complex analysis, Academic Press, New York, 1980.
- D. Brannan and T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and Its Applications (1988), pp. 53–60.
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
- M. Fekete and G. Szegö, Eine Bemerkung ber Ungerade Schlichte Funktionen, J. London Math. Soc., 1 (1933), pp. 85–89.
- B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), pp. 1569–1573.
- B. A. Frasin And T. Al-Hawary, Initial Maclaurin coefficients bound for new subclasses of bi-univalent functions, Theory Appl. Math. Comp. Sci., 5 (2015), pp. 186–193.
- G. Y. Lee and M. Asâÿcâÿä´s, Some properties of the (p q) Fibonacci and (p q) Luca’s polynomials, J. Appl. Math., 2012 (2012), pp. 1–18.
- M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), pp. 63–68.
- H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), pp. 1188–1192.
- H. M. Srivastava, S. Bulut, Cm. Âÿag¸ Lar and N. Yag?mur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), pp. 831–842.
- P Vellucci and A. M. Bersani, The class of Lucasâ?A ¸SLehmer polynomials, Rend. Mat. Appl.serie VII, 37 (2016), pp. 43–62.
- F. Yousef, T. Al-Hawary and G. Murugusundaramoorthy, Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afr.Mat., 30 (2019), pp. 495–503.
- F. Yousef, S. Alroud and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletin de la Sociedad Matematica Mexicana (2019), pp. 1–11.
- A. Zireh, E. Analouei Adegani and S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg.Math. Soc. Simon Stevin, 23 (2016), pp. 487–504.
Keywords
Analytic function, Bi-univalent function, Coefficient estimate, Lucas polynomial, Sakaguchi type function.